Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system to target individual genes. This method, in conjunction with the long reads, high consensus accuracy, and uniform coverage of SMRT Sequencing, allows accurate sequence analysis of complex genomic regions that cannot be investigated with other technologies. Using this strategy, we have successfully targeted a number of repeat expansion disorder loci (HTT, FMR1, ATXN10, C9orf72).With this data, we demonstrate the ability to isolate thousands of individual on-target molecules and, using the Sequel System, accurately sequence through long repeats regardless of the extreme GC-content. The method is compatible with multiplexing of multiple target loci and multiple samples in a single reaction. Furthermore, because there is no amplification step, this technique also preserves native DNA molecules for sequencing, allowing for the direct detection and characterization of epigenetic signatures. To this end, we demonstrate the detection of 5-mC in the CGG repeat of the FMR1 gene that is responsible for Fragile X syndrome.
Organization: PacBio
Year: 2018