

Abstract #: eP426

Full-Length Sequencing of CYP2D6 Variants with PacBio HiFi Reads

Lei Zhu, Aaron Wenger, Josiah Wilcots, John Harting, Jonas Korlach, Primo Baybayan PacBio, 1305 O'Brien Drive, Menlo Park, CA 94025

Introduction

CYP2D6 is a highly polymorphic gene with more than 130 known variants, including deletions, duplications, single nucleotide polymorphisms, and other types of variations (Butler, 2018; Black et al., 2012).

(Image cited from Black et al., 2012)

These variants affect the rate of metabolism of approximately 25% of commonly prescribed drugs in human (Owen et al., 2019). PacBio SMRT Sequencing has been proven to be an effective tool for the interrogation of CYP2D6 variants (Qiao et al., 2016; Buemans et al., 2017). With PacBio's righly accurate long reads (HiFI), we have developed a streamlined end-to-end workflow for more accurate detection of highly pdymorphic CYP2D6 locus. This study demonstrates the advantages of HiFI reads for fullength sequencing of CYP2D6, previously annotated by other technologies.

Methods

-Twenty-two Coriell pharmacogenomics samples with CYP2D6 variants were amplified with long-range PCR. -The primer sets for the amplification of upstream duplications, downstream CYP2D6 genes, and for the *5 allele shown below were adapted from Qiao et al. (2019) and Fukuda et al. (2005).

 A two-step PCR with barcoded M13 Primers was used to enable pooling of 22 samples for a single SMRTbell library preparation, which was sequenced on the PacBio Sequel II and IIe Systems.

- HiFi reads (>QV20) were demultiplexed on SMRT Link v10.0 and clustered into haplotypes. The consensus reads of each haplotype were produced using the "pbaa" amplicon analysis from bioconda (https://github.com/PadificBiosciences/pbAA) and mapped to the human reference genome GRCh38 for the assignment of CVP2D6 types.

Results

Figure 1. Barcoded CYP2D6 Amplicons.

LM, lower marker; UM, upper marker. The sample name on each electropherogram.

More than 1,600,000 full-length HiFi reads were generated from one SMRT Cell 8M with an average read length of 8.2 kb and a median HiFi quality > 99.9% (QV31).

Figure 2. Nearly all (>99%) demultiplexed reads were on target to CYP2D6 locus. 8.1 kb reads correspond to downstream gene; 8.6 kb or 10.2 kb (*36 allele) reads indicate upstream duplications; 5.1 kb reads indicate *5 allele (complete deletion).

Table 1. HiFi sequencing provides single-base resolution for diplotype calling.

Sample	Coriell CYP2D6 diplotype ¹	pbaa calling	Sample	Coriell CYP2D6 diplotype ¹	pbaa Calling
NA02016	*2×N/*17	*2x2/*17	NA17211	*2/*4	*2/*4
NA07439	*4×N/*41	*4x2/*41	NA17214	*2/*2	*2/*2
NA09301	Duplication	*1/*2x2	NA17215	*4/*41	*4/*41
NA12244	*35/*41	*35/*41	NA17217	*1/*41	*33/*41
NA16654	*10/*10	*10 + *36	NA17226	*4/*4	*4 + *36
NA16688	*2/*10	*2/*10 + *36	NA17227	*1/*9	*1/*9
NA17020	*1/*10	*1/*10	NA17232	*2/*2×N	*2×2/*35
NA17039	*2/*17	*2/*17	NA17244	DUP *4/*2A	*2/*4
NA17073	*1/*17	*1/*17	NA17276	*2/*5	*2
NA17114	*1/*5	*1	NA17282	*41/*41	*41/*41
NA17209	*1/*4	*1/*4 + *36	NA17300	*1/*6	*1/*6

Sample

NA02016		
NA07439		
NA09301	500- Marine	
NA12244	ao 11 11 1	
NA16654	geo	
NA16688	<u>ee</u>	
NA17020	ac	
NA17039		
NA17073		
NA17114		
NA17209		
Sample	·····	the states
NA17211	200. 200.	
NA17214		
NA17215		
NA17217		
NA17226	**	
NA17227	52.	
NA17232		
NA17244		
NA17276		
NA17282	240	
NA17300		

Figure 3. CYP2D6 genotyping with PacBio HiFi reads. HiFi reads provide full length sequences of each allele.

Discussion

- The PCR amplification of the CYP2D6 region was robust and specific. And HiFi sequencing provides single-base resolution for diplotype calling.
- Coriell sample NA17217 was identified by microarray as *1/*41. HiFi sequencing produced a diplotype of *33/*41.
- For sample NA17232, an additional SNP was detected, making the diplotype to be *2x2/*35 instead of *2/*2xN.
- In addition, for 4 of 22 samples, including NA16654, NA16688, NA17209, and NA17226, HiFi sequencing identified duplications missed by microarray or real-time PCR.

Conclusions

- We have demonstrated an end-to-end workflow (amplification to analysis) for the targeted sequencing of CYP2D6.
- The workflow allows full-length sequencing of 5 kb, 8 kb, and 10 kb amplicons with consensus accuracy of >QV30.
- HiFi reads revealed diplotypes that were not well characterized by other technologies.

References

Black, J. L., et al. (2012). Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction. *Drug metabolism and* disposition: the biological fate of chemicals, 40(1), 111-119.

Buermans, H. P., et al. (2017). Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. *Human mutation*, 38(3),310–316.

Butler M. G. (2018). Pharmacogenetics and Psychiatric Care: A Review and Commentary. Journal of mental health & clinical psychology, 2(2), 17–24.

Fukuda, T., et al. (2005). "Novel structure of the CYP2D6 gene that confuses genotyping for the CYP2D6*5 allele." Drug metabolism and pharmacokinetics vol. 20,5: 345-50.

Owen, R. Pet al. (2009). Cytochrome P450 2D6. Pharmacogenetics and genomics, 19(7), 559–562.

Qiao, W., et al. (2016). Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-206. *Human mutation*, 37(3),315–323.
Qiao, W., et al. (2019). In tegrated CYP2D6 in terrogation for multiethnic copy number and tandemailable detection. *Pharmacoeconomics*, 20(1),9–20.

Acknowledgements

We would like to thank Janet Ziegle for providing the Coriell pharmacogenomics samples.