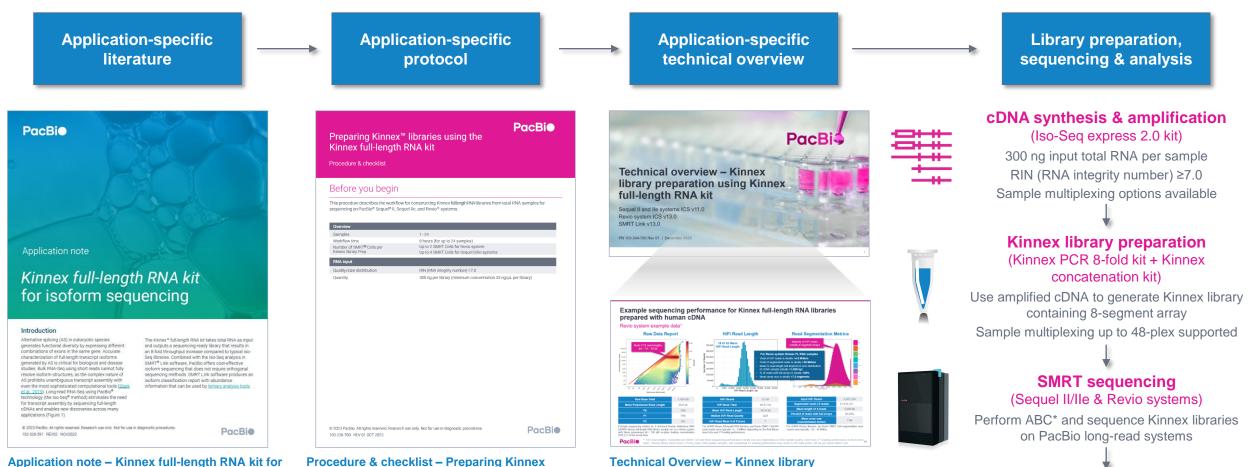
PacBi

Technical overview – Kinnex library preparation using Kinnex full-length RNA kit

Sequel II and IIe systems ICS v11.0 Revio system ICS v13.0+ SMRT Link v13.0+


PN 103-344-700 Rev 01 | March 2024

Kinnex library preparation using Kinnex full-length RNA kit

Technical Overview

- 1. Kinnex full-length RNA method overview
- 2. Kinnex full-length RNA library preparation workflow details
- 3. Kinnex full-length RNA sequencing preparation workflow details
- 4. Kinnex full-length RNA example sequencing performance data
- 5. Kinnex full-length RNA data analysis workflow overview
- 6. Technical documentation & applications support resources

Kinnex library preparation using Kinnex full-length RNA kit: Getting started

Application note – Kinnex full-length RNA kit for isoform sequencing (<u>102-326-591</u>)

Summary overview of application-specific library preparation and data analysis workflow recommendations.

(103 - 238 - 700)

libraries using the Kinnex full-length RNA kit

Technical documentation containing application-

specific library preparation protocol details.

Technical Overview – Kinnex library preparation using Kinnex full-length RNA kit (<u>103-344-700</u>)

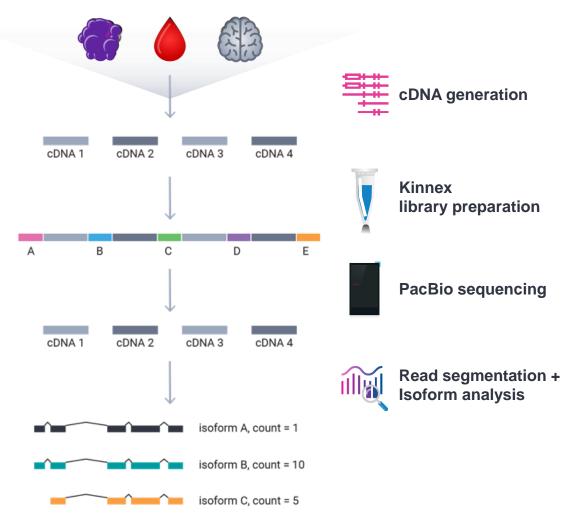
Technical overview presentations describe sample preparation details for constructing Kinnex HiFi libraries for specific applications. Example sequencing performance data for a given application are also summarized. Use

Use SMRT Link Read Segmentation data utility to split arrayed transcript HiFi reads

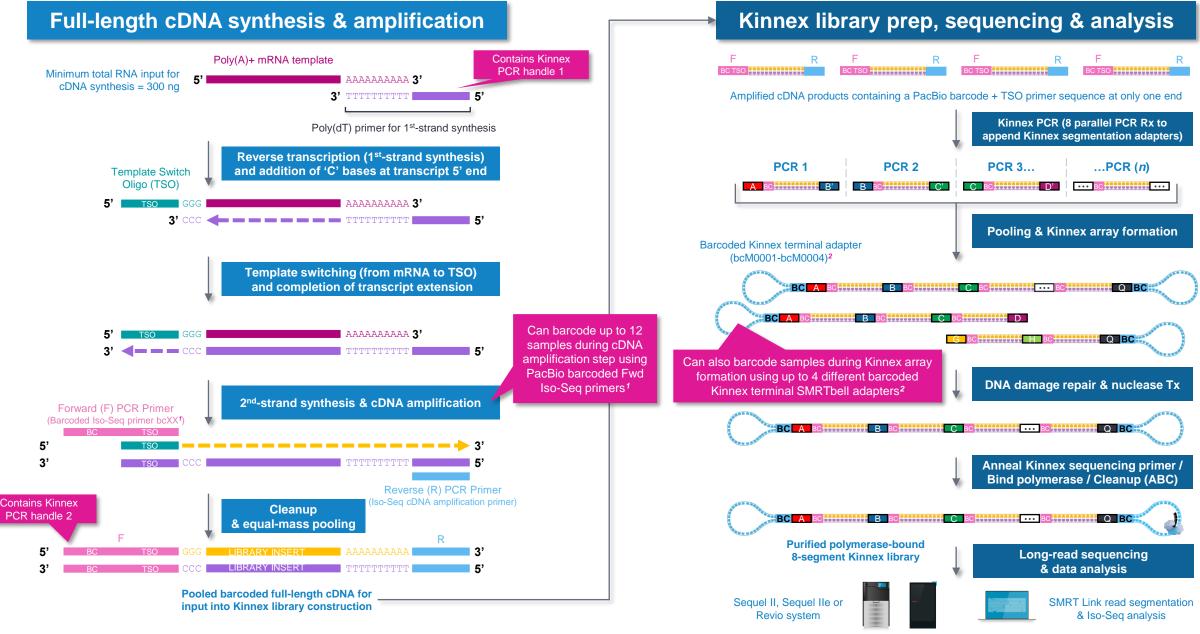
Data analysis

(SMRT Link)

Use SMRT Link Iso-Seq analysis application to identify novel genes and isoforms with abundance information 3



Kinnex full-length RNA method overview


Kinnex full-length RNA method overview

Use Kinnex full-length RNA kit to perform high-accuracy, full-length isoform sequencing with PacBio long-read systems

- Input 300 ng total RNA, RIN ≥7
- Generate up to 12-plex barcoded cDNA using Iso-Seq express 2.0 kit (103-071-500)
- 2-day Kinnex library preparation using Kinnex full-length RNA kit (103-072-000)
- SMRT Link Run Design support for 'Kinnex full-length RNA' application type with auto-analysis (read segmentation + isoform analysis)¹
- SMRT Link Iso-Seq isoform-classification software to identify novel genes and isoforms with abundance information

Kinnex full-length RNA method overview (cont.)

¹ Twelve barcoded Iso-Seq primers (Iso-Seq primer bc01–12) are available for cDNA amplification step.

² Kinnex adapter barcode sequences can be downloaded from <u>SMRT Link</u> Data Management module.

Kinnex full-length RNA library preparation procedure description

Procedure & checklist – Preparing Kinnex libraries using the Kinnex full-length RNA kit (103-238-700) describes the workflow for constructing Kinnex libraries from total RNA samples using the **Iso-Seq** express 2.0 kit and Kinnex full-length RNA kit for sequencing on PacBio Sequel II, Sequel IIe, and **Revio systems**

Overview		
Samples	1-24	
Workflow time	8 hours (for up to 24 samples)	
Number of SMRT [®] Cells per Kinnex library Prep	Up to 2 SMRT Cells for Revio system Up to 4 SMRT Cells for Sequel II/IIe systems	
RNA input		
Quality/size distribution	RIN (RNA integrity number) ≥7.0	
Quantity	300 ng per library (minimum concentration 43 ng/ μ L per library)	

Kinnex full-length RNA kit 103-072-000 (12 rxn)

Iso-Seq express 2.0 kit¹ 103-071-500 (24 rxn)

Kinnex full-length RNA library template (~12–16 kb) Contains 8 concatenated full-length cDNA segments

- Kinnex full-length RNA library prep protocol uses Kinnex full-length RNA kit and Iso-Seq express 2.0 kit
 - \rightarrow **Do not use** SMRTbell prep kit 3.0 with this protocol

Kinnex full-length RNA kit bundle and Iso-Seq express 2.0 kit components

Kinnex full-length RNA kit bundle and Iso-Seq express 2.0 kit provide full support for Kinnex library prep workflow

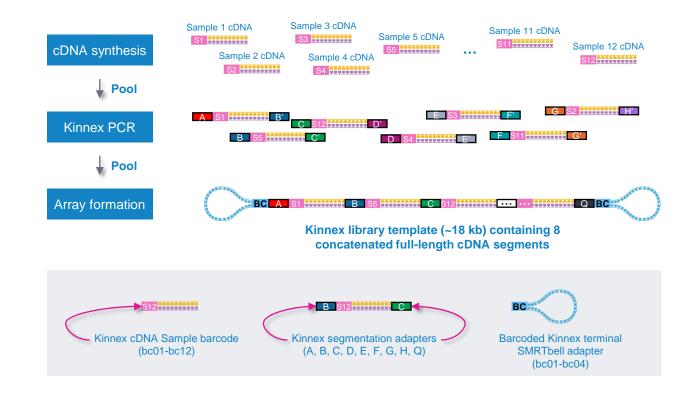
Iso-Seq express 2.0 kit (103-071-500)

Includes Iso-Seq Express template switching oligo, barcoded cDNA PCR Primers, and other reagents needed for performing 1st-strand cDNA synthesis and PCR amplification of cDNA products generated from input total RNA.

Iso-Seq express 2.0 kit components				
Compo	nent	Description		
1		 Iso-Seq RT buffer For 1st-strand cDNA synthesis 		1
2		 Iso-Seq RT primer mix For 1st-strand cDNA synthesis 		
3		 Iso-Seq RT enzyme mix For 1st-strand cDNA synthesis 		2
4		 Iso-Seq template switch oligo For 1st-strand cDNA synthesis 		
5		Iso-Seq cDNA PCR mixEnzyme nucleotide mix for cDNA amplification		3
6		Iso-Seq cDNA amplification primerReverse primer for cDNA amplification		
7		 Iso-Seq primers (bc01 – bc12) Barcoded forward primers (bc01 – bc04) for cDNA amplification 		4
FUCDI			-	

Kinnex full-length RNA kit bundle (103-072-000)

Includes Kinnex PCR kit, Kinnex concatenation and ancillary DNA cleanup reagents needed for incorporation of Kinnex segmentation adapters and Kinnex array formation for generating Kinnex full-length RNA libraries.


Kinnex full-length RNA kit components				
Compo	onent	Description		
1	Processor The Second S	 Kinnex PCR 8-fold kit (12 rxn) Contains reagents for Kinnex PCR to incorporate segmentation adapters 		
2		 Kinnex concatenation kit (12 rxn) Contains reagents for Kinnex array formation and SMRTbell template construction Includes barcoded Kinnex adapter mixes (bcM0001 – bcM0004) 		
3	Hand Alternational Alternational	SMRTbell cleanup beadsFor DNA cleanup		
4		Elution bufferFor DNA cleanup		

Kinnex full-length RNA library barcoding options for sample multiplexing

Kinnex full-length RNA library preparation procedure supports up to 48-plex sample multiplexing

Kinnex full-length RNA library preparation procedure supports up to 48-plex sample multiplexing through combined use of:

- \rightarrow 12 different barcoded cDNA amplification PCR primers (bc01 bc12)
- \rightarrow 4 different barcoded Kinnex terminal SMRTbell adapters (bc01 bc04)

Kinnex full-length RNA experimental design considerations

Kinnex full-length RNA application use case recommendations for PacBio systems

Example application	Human genetics disease studies	Biopharma for identifying highly expressed targets	Plant & animal whole genome annotation		
Experimental goal	Isoform discovery and quantification of moderate-to-rare transcriptsIsoform discovery of high expressed transcripts		Comprehensive transcript annotation in a species		
Example study design	Disease vs. normal tissues with multiple replicates Disease cohort with >20+ samples		Plant or animal with multiple tissue types		
Target depth of coverage per sample	10 M reads per sample	5 M reads per sample	≤5 M reads per tissue (of same species)		
Occurrente ana diferita en 1	Sequel II/IIe system: Up to 2 samples per SMRT Cell 8M (2-plex)	Sequel II/IIe system: Up to 3 samples per SMRT Cell 8M (3-plex)	Sequel II/IIe system: Up to 3 tissue types per SMRT Cell 8M (3-plex)		
Sample multiplexing ¹	Revio system:Up to 4 samples per RevioSMRT Cell (4-plex)SMRT Cell (8-plex)		Revio system: Up to 8 tissue types per Revio SMRT Cell (8-plex) ²		
Expected data throughput (per SMRT	Sequel II/IIe system: 15 M reads per SMRT Cell 8M divided by N samples				
Cell)	Revio system: 40 M reads divided by N samples				
Kinnex library prep protocol	Procedure & checklist – Preparing Kinnex libraries using the Kinnex full-length RNA kit (103-238-700)				
Total RNA input into Kinnex library prep workflow	300 ng total RNA (RIN ≥7) for 1 st -strand cDNA synthesis				
SMRT Link data analysis workflows	Read Segmentation and Iso-Seq analysis application with option to "pool reads and cluster together" to get a master isoform classification file with per-sample full-length read counts				
Community data analysis tools	Annotation & quantification: PIGEON, SQANTI3, Differential analysis: TappAS, Fusion calling: pbfusion, Visualization: SWAN				

PacBi

¹ Kinnex concatenation kit (103-071-800) can support up to 48-plex sample multiplexing through the combined use of 12 different barcoded cDNA amplification primers and 4 different barcoded Kinnex terminal SMRTbell adapters during Kinnex full-length RNA library construction.

² If targeting <5 M transcripts reads per sample \rightarrow can multiplex up to 12 tissues types per Revio SMRT Cell.

Kinnex full-length RNA library preparation workflow details

Procedure & checklist – Preparing Kinnex libraries using the Kinnex full-length RNA kit (103-238-700)

Procedure & checklist <u>103-238-700</u> describes the workflow for constructing Kinnex libraries from total RNA samples using the **Iso-Seq express 2.0 kit** and **Kinnex full-length RNA kit** for sequencing on PacBio Sequel II, Sequel IIe, and Revio systems¹

Procedure & checklist contents

- 1. Total RNA input QC recommendations and general best practices for reagent & sample handling.
- 2. Enzymatic workflow steps for cDNA synthesis and amplification.
- **3.** Enzymatic workflow steps for construction of 8-segment Kinnex arrays from amplified cDNA.
- 4. Enzymatic workflow steps for DNA damage repair & nuclease treatment of Kinnex libraries.
- 5. Workflow steps for final cleanup of Kinnex SMRTbell libraries using SMRTbell cleanup beads.

sequencing on PacBio® Sequel® II, Sequ Overview Samples Workflow time Number of SMRT® Cells per Kinnex library Prep	1–24 1.5 days (for up to 24 samples)	amples for
This procedure describes the workflow f sequencing on PacBio® Sequel® II, Sequ Overview Samples Workflow time Number of SMRT® Cells per Kinnex library Prep	uel IIe, and Revio* systems. 1–24 1.5 days (for up to 24 samples)	amples for
Samples Workflow time Number of SMRT [®] Cells per Kinnex library Prep	1.5 days (for up to 24 samples)	
Workflow time Number of SMRT® Cells per Kinnex library Prep	1.5 days (for up to 24 samples)	
Number of SMRT® Cells per Kinnex library Prep		
Kinnex library Prep		
	>2 SMRT Cells for Revio system >4 SMRT Cells for Sequel II/IIe systems	
RNA input		
Quality/size distribution	RIN (RNA integrity number) ≥7.0	
Quantity	300 ng per library (minimum concentration 43 ng/µL per library)	

PacBio Documentation (103-238-700)

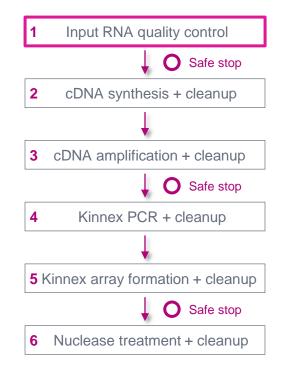
Kinnex full-length RNA library construction workflow overview

Procedure & checklist – Preparing Kinnex libraries using the Kinnex full-length RNA kit (103-238-700)

Cleanup

DNA QC

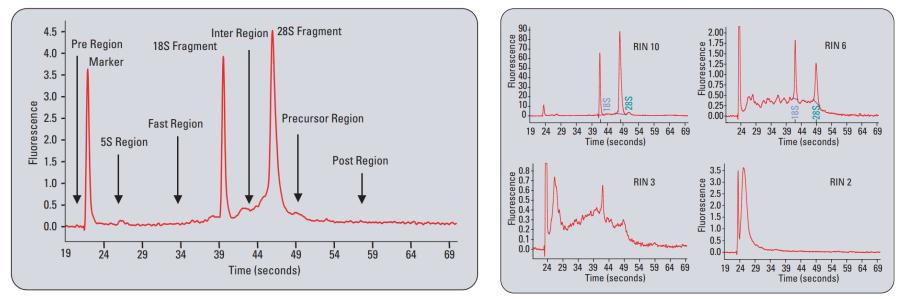
Walk-away time*


General best practices recommendations for preparing Kinnex full-length RNA libraries

Reagent and sample handling

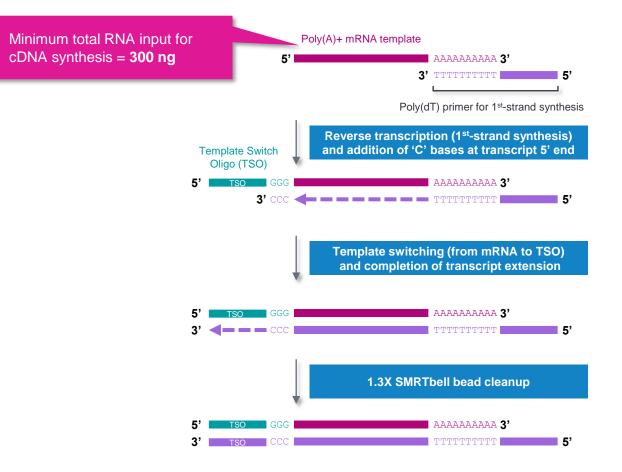
- Take care to accurately pipette SMRTbell cleanup beads because small changes in volume can significantly alter the size distribution of your sample.
- Equilibrate the SMRTbell cleanup beads at room temperature for 30 mins prior to use.
- In cDNA amplification and Kinnex PCR, keep sample(s) on ice until thermal cycler lid has reached 105°C to avoid digestion of primers by polymerase exonuclease activity.
- This workflow takes ~8 hrs to complete.
 - If a stop is necessary, refer to the workflow for safe stopping points.

Input RNA quality control


Input RNA quality control is highly recommended before proceeding to the MAS-Seq library prep workflow

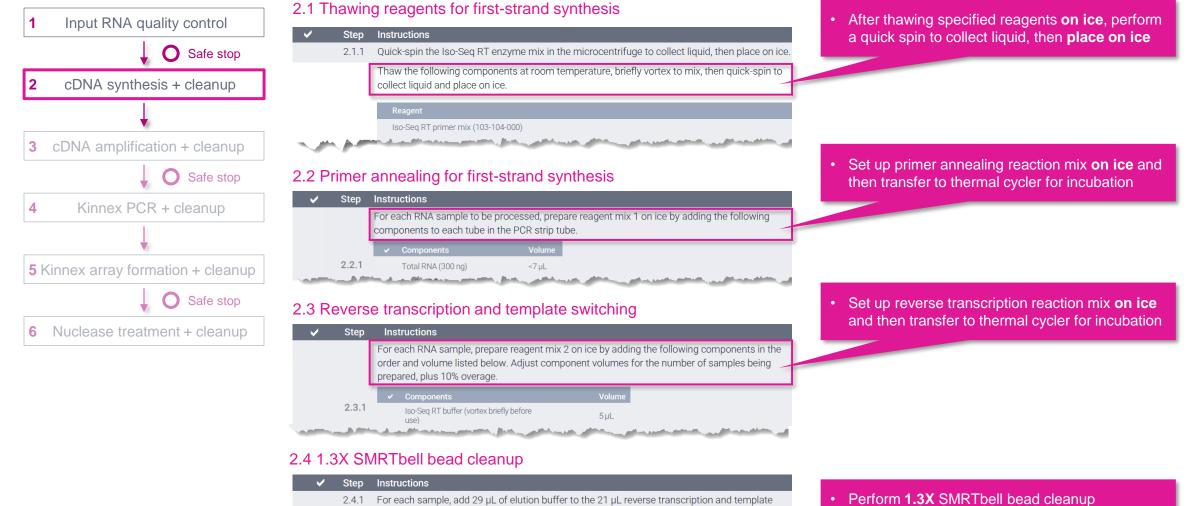
Left: Bioanalyzer electropherogram detailing the regions that are indicative of RNA quality. **Right:** Sample electro-pherograms corresponding to different RNA Integrity Number (RIN) scores. Samples range from intact (RIN 10), to degraded (RIN 2). Images from Agilent Application Note: RNA Integrity Number (RIN) – Standardization of RNA Quality Control (5989-1165EN)

PacBi


- 300 ng of total RNA per library (minimum concentration 43 ng/µL per library) is required for this procedure
- Sample QC of input total RNA samples should be assessed by measuring RNA Integrity Number (RIN) using a Bioanalyzer 2100 instrument (Agilent Technology) with RNA 6000 Nano kit¹
 - RIN ≥7.0 (ideally ≥8.0) is sufficient for Kinnex full-length RNA protocol
 - Samples with RIN <7.0 can be processed, but risk of significant underperformance or even failure is greatly increased
- RIN score (1 to 10) is related to ratio of the area under 28s and 18s fragment peaks and also takes into account signal intensity above baseline in the Inter-Region and Fast Region since this is where degradation products appear
- Higher RIN numbers are correlated with better overall sample quality and lower degradation

cDNA synthesis + cleanup

In this step, total RNA samples are converted to first-strand cDNA products

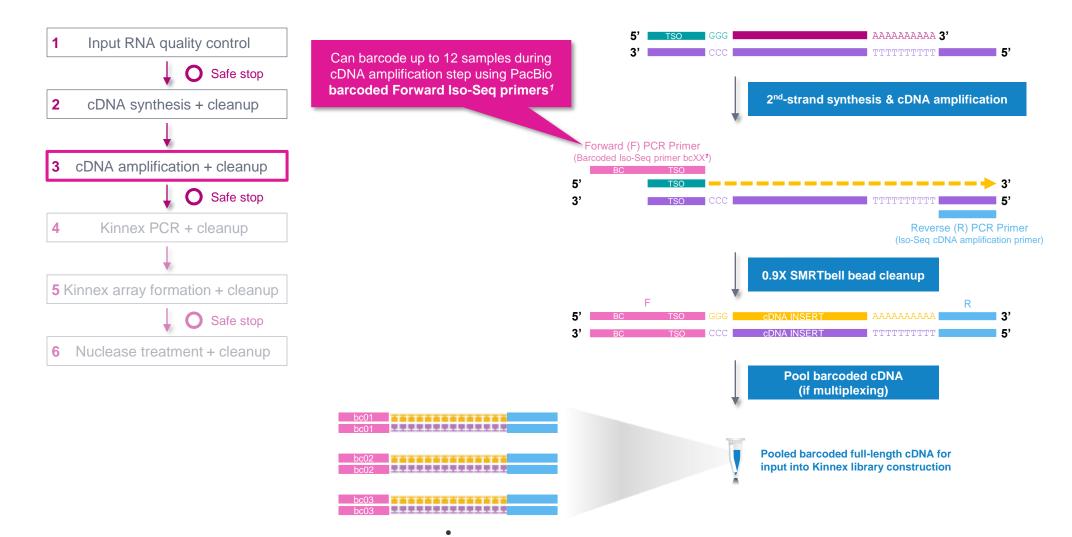


PacBi

cDNA synthesis + cleanup (cont.)

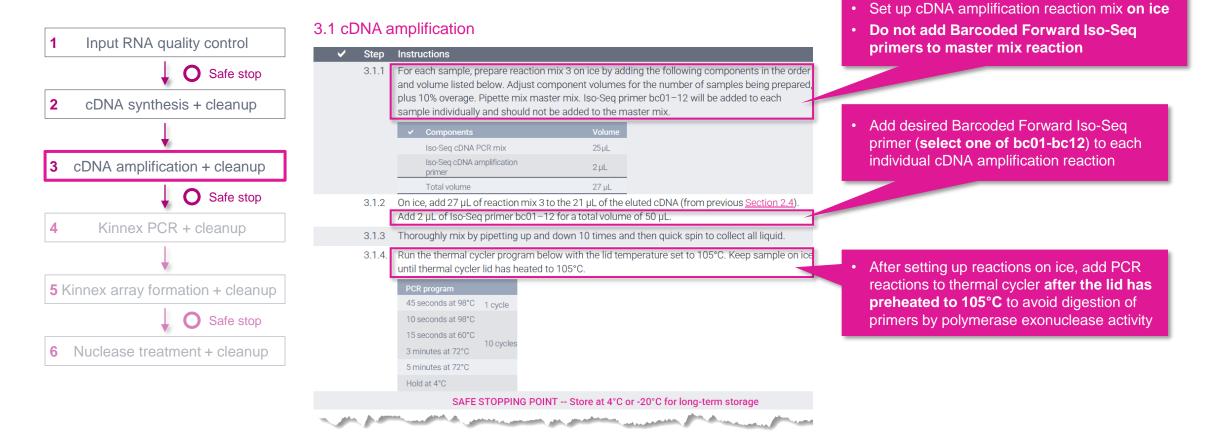
Procedural notes

PacBi



2.4.1 For each sample, add 29 μ L of elution buffer to the 21 μ L reverse transcription and template switching reaction (Section 2.3) for a total volume of 50 μ L.

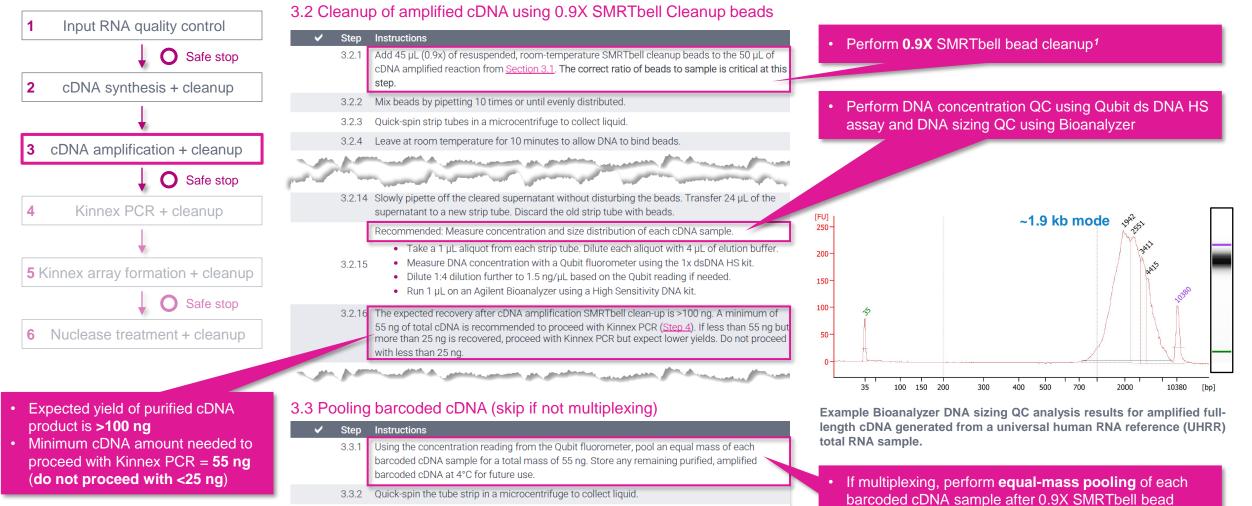
- 2.4.2 Add 65 µL of resuspended, room-temperature SMRTbell cleanup beads.
- 2.4.3 Mix beads by pipetting 10 times or until evenly distributed.


cDNA amplification + cleanup

In this step, first-strand cDNA products are PCR-amplified and barcoded using barcoded Iso-Seq primers

cDNA amplification + cleanup

Procedural notes

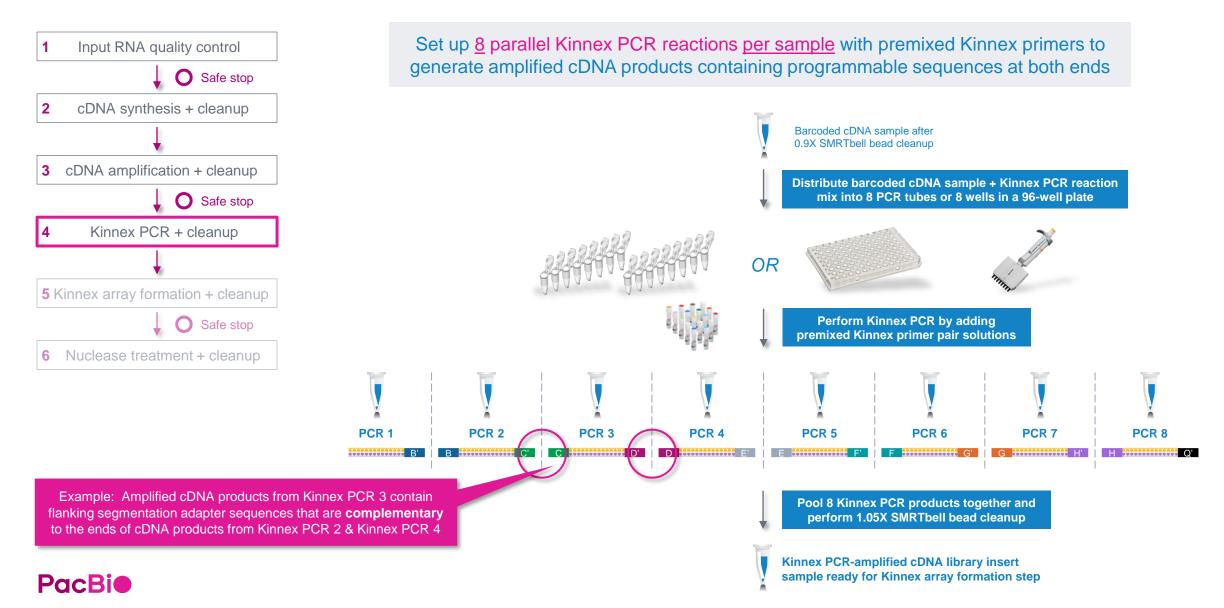


cDNA amplification + cleanup (cont.)

Procedural notes

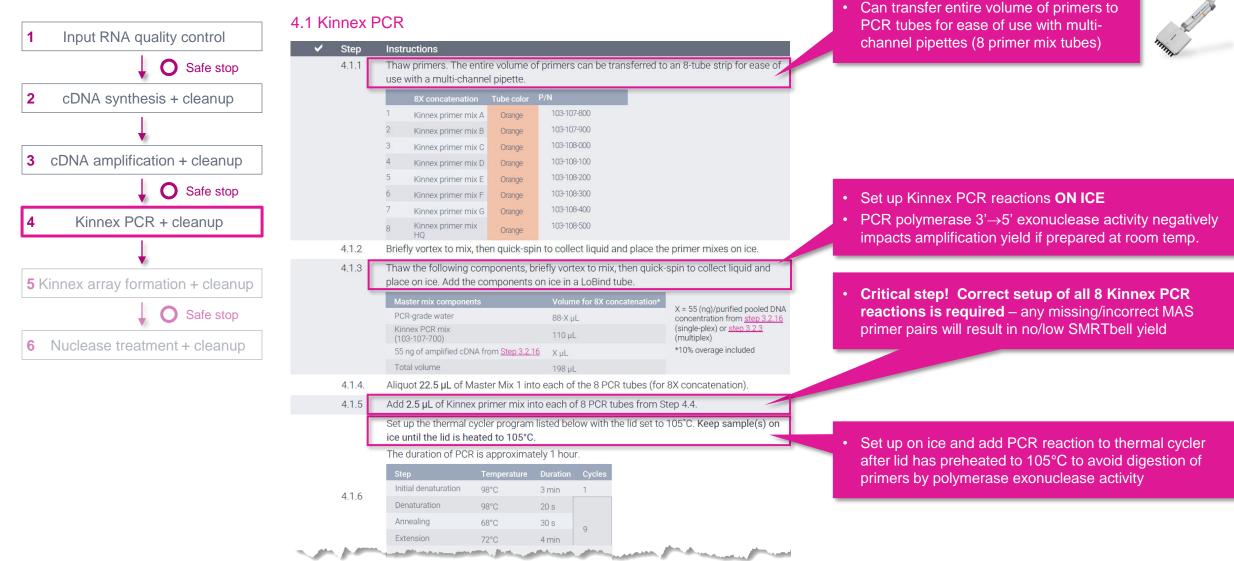
PacBi

3.3.3 Proceed to next step of the protocol.

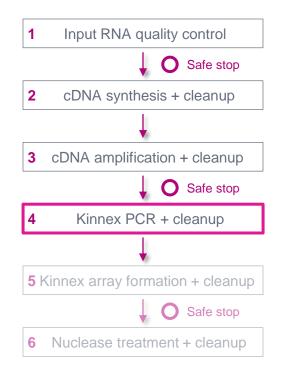

ويرجعه المحمد الأربين المحافظ متعديد بالتربيب المتألي بالابت فالتربي والملأن فالمحافظ معاداتك والمحافظ الأست والتكرين

* Note: Non-Kinnex full-length RNA (bulk monomer) Iso-Seq protocol (*Procedure & checklist – Preparing Iso-Seq libraries using SMRTbell prep kit 3.0* [102-396-000] offers 3 options for post-cDNA amplification SMRTbell bead cleanup: 0.82X, 0.86X, and 0.95X \rightarrow For simplification, Kinnex full-length RNA protocol only specifies to use 0.9X.

cleanup


Kinnex PCR

In this step, incorporate programmable Kinnex segmentation adapter sequences into amplified cDNA products


Kinnex PCR (cont.)

Procedural notes

Kinnex PCR (cont.)

Procedural notes

4.2 Pooling of 8 Kinnex PCR products and 1.05X SMRTbell cleanup

- Step
 Instructions

 4.2.1
 Add 23 μL from each of the 8 PCR reactions into a 1.5 mL tube for a total volume of 184 μL. An equal volume of each PCR product is necessary for efficient array assembly.

 4.2.2
 Add 193 μL (1.05X v/v) of resuspended, room-temperature SMRTbell cleanup beads to a tube o pooled Kinnex PCR amplicon. The correct ratio of beads to pooled sample is critical at this step.
- 4.2.3 Pipette-mix the beads until evenly distributed.
- 4.2.4 Quick-spin the tube in a microcentrifuge to collect liquid.
- 4.2.5 Leave at room temperature for 10 minutes to allow the DNA to bind beads
- 4.2.6 Place the tube in a magnetic separation rack until the beads separate fully from the solution.
- 4.2.7 Slowly pipette off the cleared supernatant without disturbing the beads. Discard the supernatant.
- 4.2.8 Slowly dispense 200 µL, or enough to cover the beads, of **freshly prepared 80% ethanol** into the tube. After 30 seconds, pipette off the 80% ethanol and discard.
- 4.2.9 Repeat the previous step.

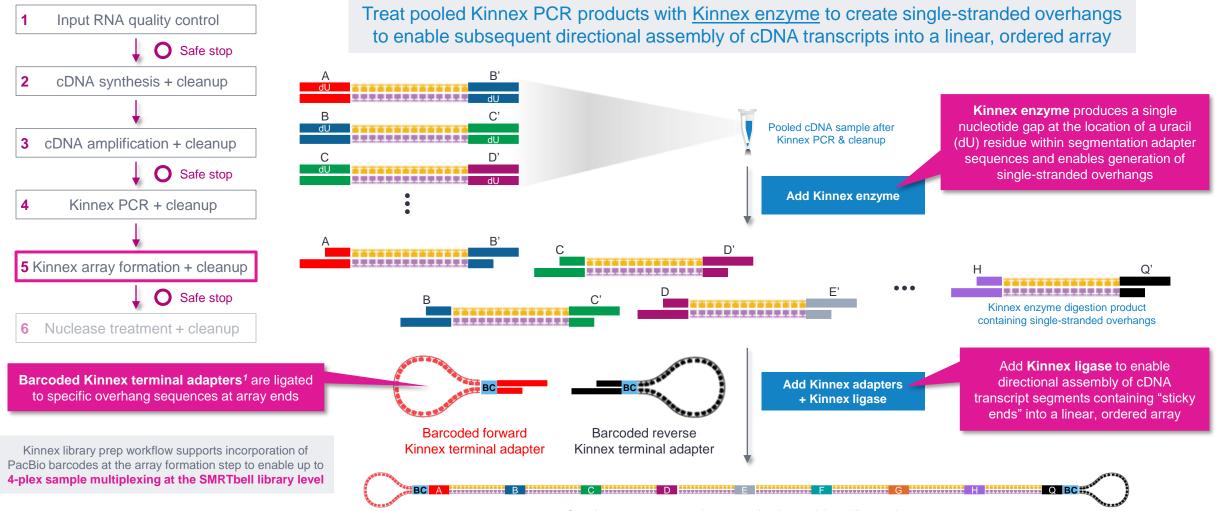
4.2.10

Remove residual 80% ethanol:

- Remove the tube from the magnetic separation rack.
- Quick-spin the tube in a microcentrifuge.
- Place the tube back in the magnetic separation rack until the beads separate fully from the solution.
- Pipette off residual 80% ethanol and discard.
- 4.2.11 Remove the tube from the magnetic rack. **Immediately** add **40 µL** of **elution buffer** to the tube and resuspend the beads by pipetting 10 times or until evenly distributed.
- 4.2.12 Quick-spin the tube in a microcentrifuge to collect liquid.
- 4.2.13 Leave at room temperature for 5 minutes to elute DNA.
- 4.2.14 Place tube in a magnetic separation rack until beads separate fully from the solution.
- 4.2.15 Slowly pipette off the cleared supernatant without disturbing the beads. Transfer supernatant to a **new LoBind tube**. Discard old tube with beads.

and the second second

4.2.16 Make a 1:10 dilution of the sample in elution buffer and measure DNA concentration with a Qubit fluorometer using the 1x dsDNA HS kit. Typical yield is $6-12 \mu g$.


 Pool exactly 23 μL from each Kinnex PCR reaction in a clean 1.5 mL DNA LoBind tube¹ for a total combined volume of 184 μL

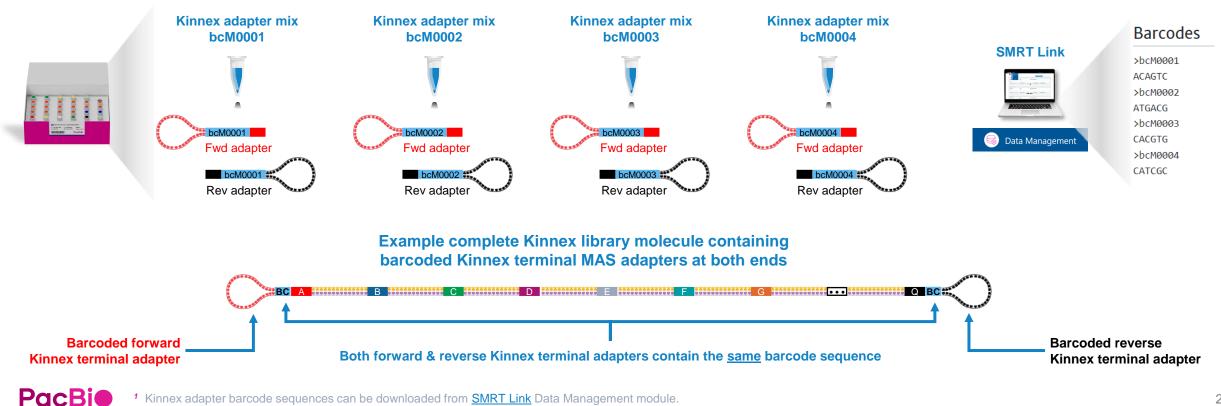
- Add exactly 193 μL of SMRTbell cleanup beads (1.05X)
- Kinnex PCR mix significantly increases stringency of SMRTbell clean up beads, so accurate pipetting is critical

 Perform DNA concentration QC to verify there is sufficient yield of Kinnex PCR products (min. 4 μg) to proceed to Kinnex array formation step

Kinnex array formation

In this step, assemble cDNA transcripts ("segments") containing programmable ends into a linear array

Complete 8-segment transcript array molecule containing 2 Kinnex adapters


PacBi

¹ Note: Four barcoded terminal Kinnex adapters (Kinnex adapter bcM0001-M0004) are available for Kinnex array formation step. Note: Kinnex concatenation workflow is not compatible with standard SMRTbell adapters from SMRTbell prep kit 3.0 and is also not compatible with SMRTbell barcoded adapter plate 3.0.

Kinnex array formation (cont.)

Kinnex terminal adapters incorporate barcode sequences to enable up to 4-plex sample multiplexing at the library level

- Kinnex adapters contain barcode sequences¹ to enable (optional) sample multiplexing at the SMRTbell library level (up to 4-plex)
 - Forward and reverse Kinnex adapter pairs are pre-mixed in Kinnex concatenation kits ٠
 - Kinnex concatenation kits contain a total of 4 barcoded Kinnex adapter mixes (bcM0001-bcM0004) to enable multiplexing of up to 4 samples per SMRT Cell

¹ Kinnex adapter barcode sequences can be downloaded from SMRT Link Data Management module.

Kinnex array formation (cont.)

Kinnex terminal adapters use a new design that enables improved SMRT sequencing performance

- Kinnex adapters enable:
 - Longer polymerase read length → Improved HiFi conversion rate (HiFi reads/Total P1 reads)
 - Improved P1 loading efficiency

• New Kinnex adapter design requires a different sequencing primer (Kinnex sequencing primer 103-179-000)

Kinnex array formation (cont.)

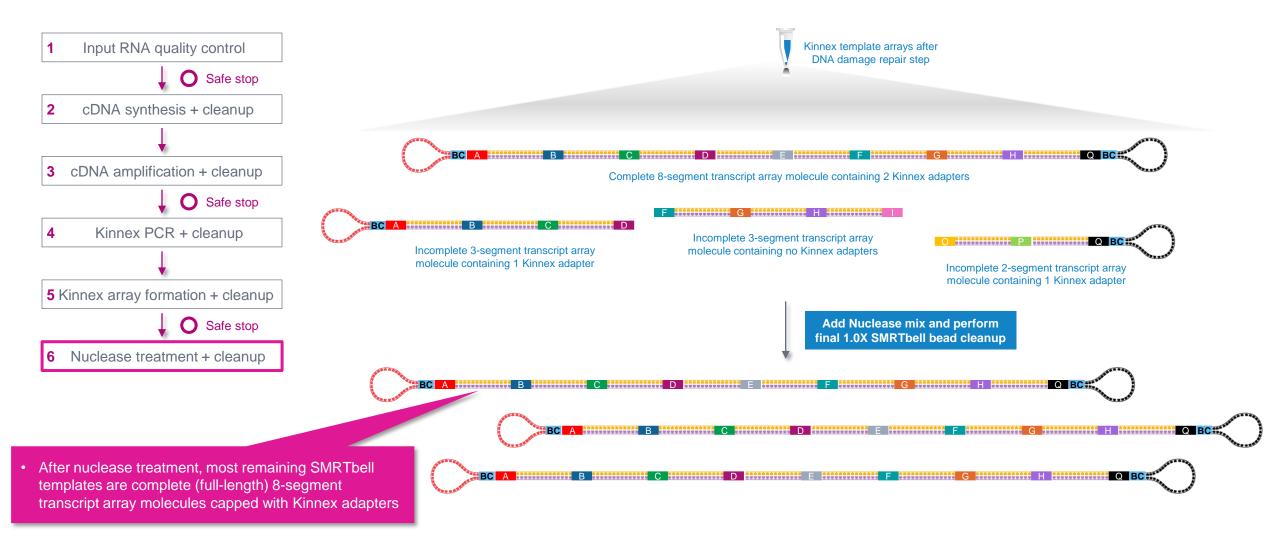
Procedural notes

5.2 1X SMRTbell bead cleanup

- Step
 Instructions

 5.2.1
 Add 1X v/v (60 μL) of resuspended, room temperature SMRTbell cleanup beads to each sample.
 - 5.2.2 Pipette-mix the beads until evenly distributed and quick-spin in a microcentrifuge to collect liquid.

Perform **1X** SMRTbell bead cleanup at room temp.


Recommended input amount to proceed with Kinnex array formation is $5 \mu g$ of Kinnex PCR amplicons (from

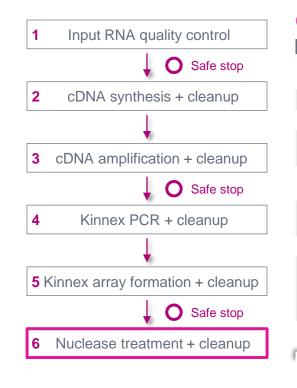
PacBi

and the second and the second second second and the second s

Nuclease treatment & cleanup

Perform nuclease treatment and final SMRTbell bead cleanup to remove incomplete SMRTbell template arrays

PacBi


Nuclease treatment & cleanup (cont.)

Procedural notes

Nuclease treatment & cleanup (cont.)

Procedural notes

Final Kinnex library yield is typically sufficient to load ≥2 SMRT Cells

6.2 Final cleanup with 1X SMRTbell cleanup beads

- Step Instructions
 - 6.2.1 Add 50 µL SMRTbell cleanup beads to each sample from the previous step. Pipette-mix the beads until evenly distributed.
 - 6.2.2 Quick-spin the tube strip in a microcentrifuge to collect all liquid.
 - 6.2.3 Leave at room temperature for 10 minutes to allow DNA to bind the beads.
 - 6.2.4 Place the tube strip in a magnetic separation rack until the beads separate fully from the solution.
 - 6.2.5 Slowly pipette off the cleared supernatant without disturbing the beads and discard the supernatant.
 - 6.2.6 Slowly dispense 200 μL, or enough to cover the beads, of freshly prepared 80% ethanol into each tube. After 30 seconds, pipette off the 80% ethanol and discard.
 - 6.2.7 Repeat the previous step.

6.2.8

Remove residual 80% ethanol:

- · Remove the tube strip from the magnetic separation rack.
- Quick-spin the tube strip in a microcentrifuge.
- Place the tube strip back in a magnetic separation rack until beads separate fully from

6.2.13 Slowly pipette off the cleared supernatant without disturbing the beads. Transfer supernatant to a new PCR tube strip. Discard old tube strip with beads.

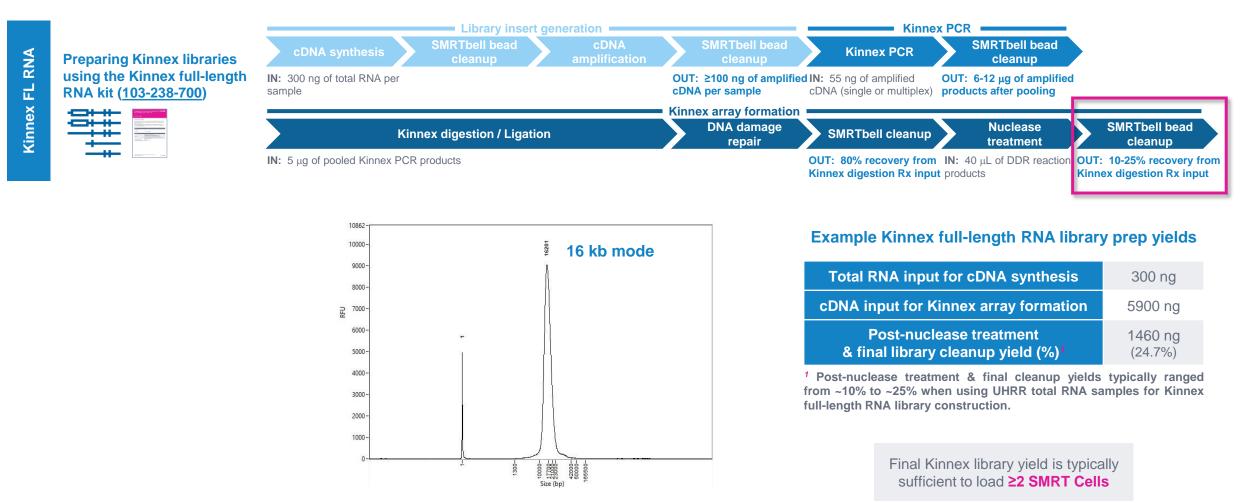
Take a 1 µL aliquot from each tube. Make a 1:5 dilution of the sample in elution buffer and measure DNA concentration with a Qubit fluorometer using the 1x dsDNA HS kit. Calculate the 6.2.14 total mass. Expect 10-25% recovery of the starting Kinnex-PCR product.

Recommended: Further dilute each aliquot to 250 pg/µL with the Femto Pulse dilution buffer. Measure the final SMRTbell library size distribution with a Femto Pulse system.

Proceed to SMRT Link Sample Setup to prepare the SMRTbell library for sequencing. DNA
 6.2.15 concentration must be less than 60 ng/µl to go into ABC. Using a concentration above 60 ng/µl will result in lower loading during sequencing.

6.2.16 Store SMRTbell libraries at 4°C if sequencing within the week. Long-term storage should be at -20°C. Minimize freeze-thaw cycles when handling SMRTbell libraries.

- Perform **DNA concentration QC** on final purified Kinnex RNA library using a Qubit dsDNA HS assay
 - Typical final SMRTbell library yield from 5 μg of input DNA into Kinnex array formation is ~10 – 25% – a much higher observed yield might suggest incomplete digestion of partial SMRTbell templates
 - **Troubleshooting tip:** If SMRTbell library yield is higher than expected and *P1* loading is lower than expected, consider repeating the nuclease treatment step

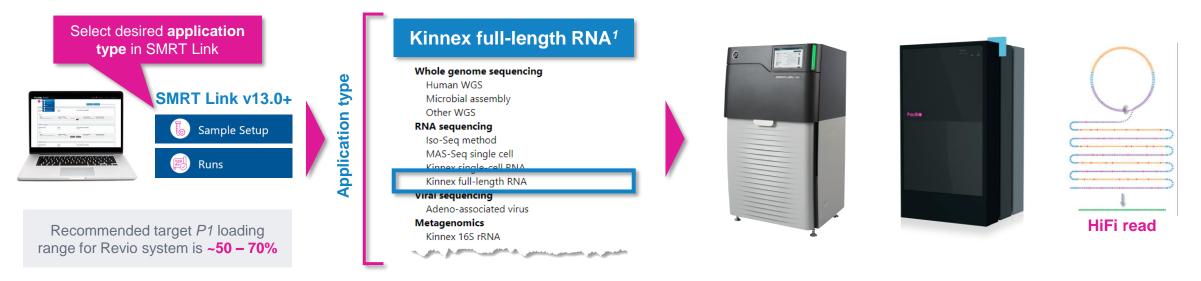

- Perform **DNA sizing QC** on final purified Kinnex fulllength RNA library using a Femto Pulse system (expected final library insert size is **~12 – 16 kb**)
- Kinnex full-length RNA final SMRTbell library concentration must be ≤60 ng/ μL to proceed with SMRT Link sample setup (ABC¹)
 - \rightarrow Using a concentration above 60 ng/µL will result in lower loading during sequencing

PacBi

PROTOCOL COMPLETE

Kinnex full-length RNA library prep inputs & expected step yields

Final Kinnex library yield is typically sufficient to load ≥2 SMRT Cells


Example Femto pulse DNA sizing QC analysis results for final Kinnex full-length RNA library prepared with human universal human reference RNA (UHRR) total RNA sample.

Kinnex full-length RNA sequencing preparation workflow details

Sample Setup & Run Design recommendations for Kinnex full-length RNA libraries

SMRT Link supports Kinnex full-length RNA sequencing preparation & analysis workflow for PacBio systems¹

SMRT Link module	Key setup parameters For Kinnex libraries	Sequel II/IIe system recommended settings for Kinnex libraries	Revio system recommended settings for Kinnex libraries			
	Library type	Kinnex				
Comple cotur	Primer	Kinnex sequencing primer				
Sample setup	Binding/Polymerase kit ¹	Sequel II binding kit 3.2 (includes Kinnex sequencing primer)	Revio polymerase kit (includes Kinnex sequencing primer)			
	Concentration on plate	40 – 60 pM	100 – 150 pM			
Runs \rightarrow Run design	Adapter / Library type	SMRTbell Adapter Design = SMRTbell Kinnex Prep Kit	Library type = Kinnex			
	Movie collection time	30 hrs	24 hrs			
	Use adaptive loading	YES				
	On-instrument CCS	CCS Analysis Output - Include Low Quality Reads = NO CCS Analysis Output - Include Kinetics Information = NO	Consensus Mode = MOLECULE			

PacBio ¹ Kinnex full-length RNA kit requires SMRT Link v13.0 or higher.

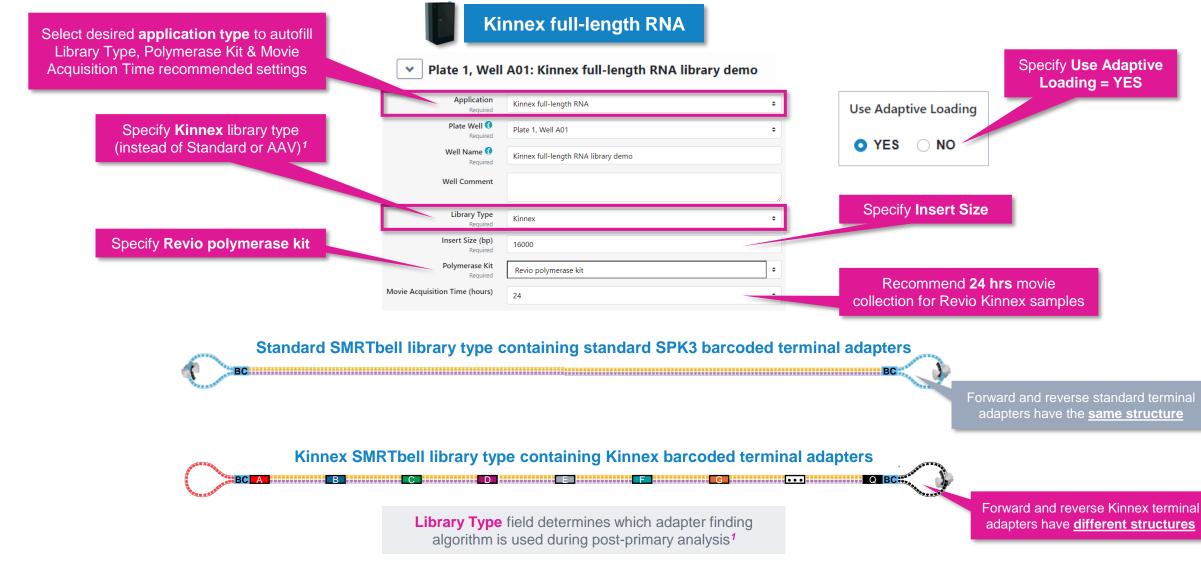
SMRT Link Sample Setup and Run Design for Kinnex kits video demonstration

Video demonstration of SMRT Link Sample Setup and Run Design setup procedure for Kinnex kits supporting full-length RNA sequencing, single-cell RNA sequencing and full-length 16S rRNA sequencing

Sample Setup / Sample Calculation Sequel II binding kit 3.1/3.2, Revio polymerase kit	_		🖬 Conversion Calculator
	+ Add Sam	nple Group	Autosaved at 2023-11-20, 09/23/31 AM
		Sample group	
		Copy Remove Lock Download CSV	
	Name	My Batch of Samples	
	Application	Kinnex full-length RNA V	
	Library type	Kinnex	<u>Demo video</u> for Sample Setup and Run Design for Kinnex kits
	Polymerase / Binding kit	Revio polymerase kit 🗢	(SMRT Link v13.0+)
	Number of samples	1 samples	Design for Kinney kits in SMRT Link v13 0+
	SMRT Cells per sample	1 cells	
	Available volume per sample 🔇	20 UL	 Kinnex kits support full-length RNA sequencing (Kinnex full-length RNA kit), full-
	Insert size 🔞	16000 bp	
	Sample concentration 📀	40 ng/uL	rRNA kit) and full-length single-cell RNA sequencing (Kinnex single-cell RNA kit)
	Cleanup anticipated yield 🔞	75 %	6
	Concentration on plate	130 pM	n
		Recommended: 100-150 pM	1
YouTube	Minimum pipetting volume 🜖	1 UL	-
	Comment 🚯		

SMRT Link Sample Setup procedure for Kinnex full-length RNA libraries

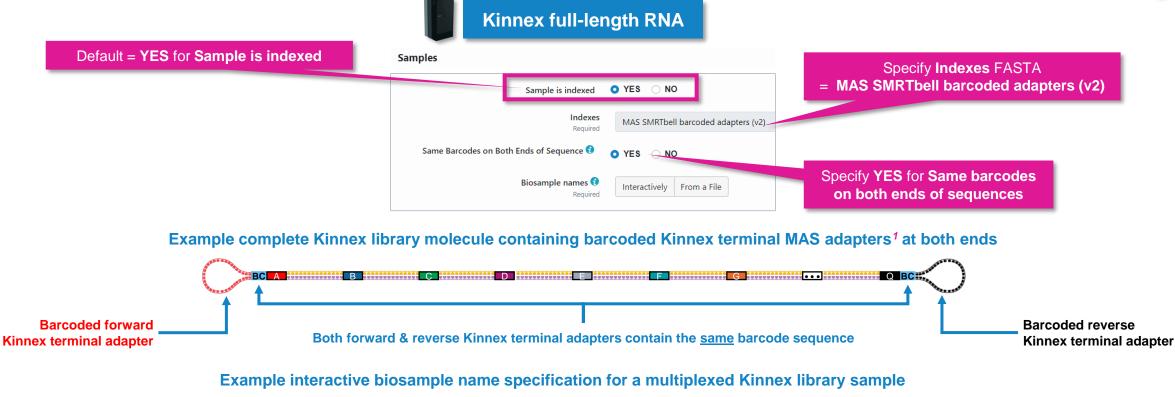
Revio	system	Sequel II and	lle systems	
	Sample group >		^Ⅲ < Sample group >	Select application type to autofill fields in green
	Copy Remove Lock Download CSV		Copy Remove Lock Download CSV	
Name	Kinnex full-length RNA library demo	Name	Kinnex full-length RNA library demo	
Application	Kinnex full-length RNA	Application	Kinnex full-length RNA	IMPORTANT: Specify Library type = Kinnex
Library type	Kinnex 🗸	Library type	Kinnex	Library type field determines sequencing primer type to use for annealing step
Polymerase / Binding kit	Revio polymerase kit	Polymerase / Binding kit	Sequel® II Binding Kit 3.2 🔶	→ Kinnex libraries require use of Kinnex sequencing primer ¹
Number of samples	1 samples	Number of samples	1 samples	
SMRT Cells per sample	1 cells	SMRT Cells per sample	1 cells	
Available volume per sample 🕄	20 uL	Available volume per sample 🕄	20 uL	 Select Revio polymerase kit for Revio system and Sequel II Binding Kit 3.2 for Sequel II/IIe systems
Insert size 🕄	16000 bp	Insert size 🕄	16000 bp	
Sample concentration 🕄	40 ng/uL	Sample concentration 🕄	40 ng/uL	 Recommended Kinnex full-length RNA library input concentration for sample setup is 20 – 60 ng/μL
Cleanup anticipated yield 🕄	75 %	Cleanup anticipated yield 🕄	75 %	
Concentration on plate	130 pM Recommended: 100-150 pM	Concentration on plate	50 pM Recommended: 40-60 pM	Recommended OPLC range is 100 – 150 pM for Revio system and 40 – 60 pM for Sequel II/IIe systems
Minimum pipetting volume 🕄	1 uL	Minimum pipetting volume 🕄	1 uL	
Comment 🕄	Kinnex library containing array of 8 FL cDNA segments	Comment 🕄	Kinnex library containing array of 8 FL cDNA segments	 Recommended target <i>P1</i> loading range Revio system: ~50 – 70%


PacBi

• Sequel II and IIe systems: ~60 - 80%

¹ Sample Setup Library type field specifies structure of SMRTbell library and determines sequencing primer type to use for annealing step. For Kinnex libraries, the forward and reverse Kinnex terminal SMRTbell adapters have different structures and require use of Kinnex sequencing primer for primer annealing step. (View Video tutorial - SMRT Link Sample Setup and Run Design setup procedure 35 for Kinnex kits at: YouTube Link)

SMRT Link Run Design procedure for Revio system


Sample and run information

Pacbio ¹ Note: When sequencing a Kinnex library sample, if 'Standard' library type is mistakenly selected instead of 'Kinnex' then a higher missing adapter rate (> 95%) and a slight degradation in barcode demultiplexing performance (~93-96% barcoded HiFi read yield) will be observed.

SMRT Link Run Design procedure for Revio system (cont.)

Sample indexing (barcoding) information

Barcode Selector and Sample Name Editor ()

Available Barcodes	Included Barcodes	5
Filter		Filter
Barcode Jî	□ Barcode ↓î	Bio Sample 🎝
IIII bcM0001bcM0001		
iiii 🗋 bcM0002bcM0002		
iiii 🗋 bcM0003bcM0003		
iiii 🔲 bcM0004bcM0004		

Barcode Selector and Sample Name Editor 🕄

A	vailabl	e Barcodes		Inclu	uded	Barcodes		
			Filter					Filter
٦]	Barcode ↓î				Barcode ↓î	Bio San	nple ↓î
		bcM0003bcM0003				bcM0001bcM0001	Kinnex	adapter-barcoded library 1
		bcM0004bcM0004				bcM0002bcM0002	Kinnex	adapter-barcoded library 2

MAS SMRTbell barcoded adapter indexes

>bcM0001
ACAGTC
>bcM0002
ATGACG
>bcM0003
CACGTG
>bcM0004
CATCGC

SMRT Link

Data Management

SMRT Link Run Design procedure for Revio system (cont.)

-

38

Run options and data options

Kinnex full-length RNA

 Run Options
 On-plate loading concentration is required for Revio samples

 Library Concentration (pM)
 130

 Required
 130

 ✓ Data Options
 Default = NO for Include Base Kinetics

 Include Base Kinetics
 YES
 NO

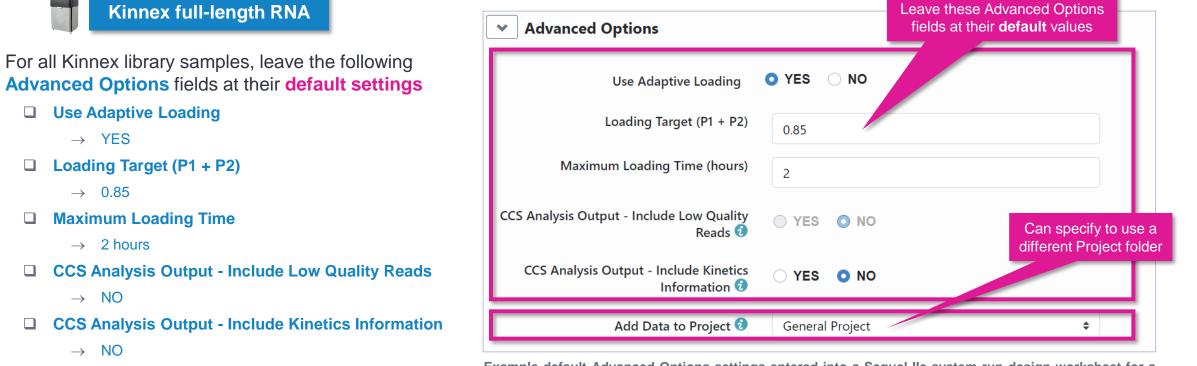
 Consensus Mode
 MOLECULE
 STRAND

 Assign Data To Project
 General Project
 Default Consensus Mode = MOLECULE¹

Can leave Include Base Kinetics and Consensus Mode fields at their default settings for Kinnex library samples

SMRT Link Run Design procedure for Sequel II/IIe systems Select desired Kinnex application type from drop-down menu Sample information and run information 🔓 Copy 🛛 🛍 Delete SAMPLE 1: Kinnex full-length RNA library demo , A01, 30 hour movie, 1600 **Kinnex full-length RNA** Import from Sample Setup E Select Sample Application Kinnex full-length RNA Select desired Kinnex application from the . Application field drop-down menu Well Sample Name 🕄 Kinnex full-length RNA library demo The following fields are auto-populated with default ٠ Bio Sample Name 🕤 recommended values and high-lighted in green: Sample Comment SMRTbell Adapter Design Default SMRTbell adapter design for Kinnex samples is SMRTbell Kinnex Prep Kit → SMRTbell Kinnex Prep Kit Sample Well A01 **Binding Kit** SMRTbell Adapter Design SMRTbell® Kinnex Prep Kit Required \rightarrow Sequel II Binding Kit 3.2 Binding Kit Sequel II Binding Kit 3.2 Required **Sequencing Kit** Sequencing Kit Sequel[®] II Sequencing Plate 2.0 (4 rxn) Required \rightarrow Sequel II Sequencing Plate 2.0 (4 rxn or 1 rxn) DNA Control Complex Sequel ® II DNA Internal Control Complex 3.2 **DNA Control Complex** Insert Size (bp) 16000 Required → Sequel II DNA Internal Control Complex 3.2 Recommended Concentration on Plate (pM) 40 - 60 pM Movie Time per SMRT Cell On-Plate Loading Concentration (pM) 45 Recommended OPLC for Sequel II/IIe \rightarrow 30 hrs Required Kinnex library samples is 40 - 60 pM Movie Time per SMRT Cell (hours) 30 **Pre-Extension Time** \rightarrow 2 hrs Recommended Use Pre-Extension YES NO NO movie time = 30 hrs Pre-Extension Time (hours) SMRTbell Adapter Design field determines which adapter finding algorithm is used during post-primary analysis¹ CCS Analysis will be performed on-instrument to produce HiFi .bam f

Example sample information entered into a Sequel IIe system run design worksheet for a Kinnex fulllength RNA library sample.

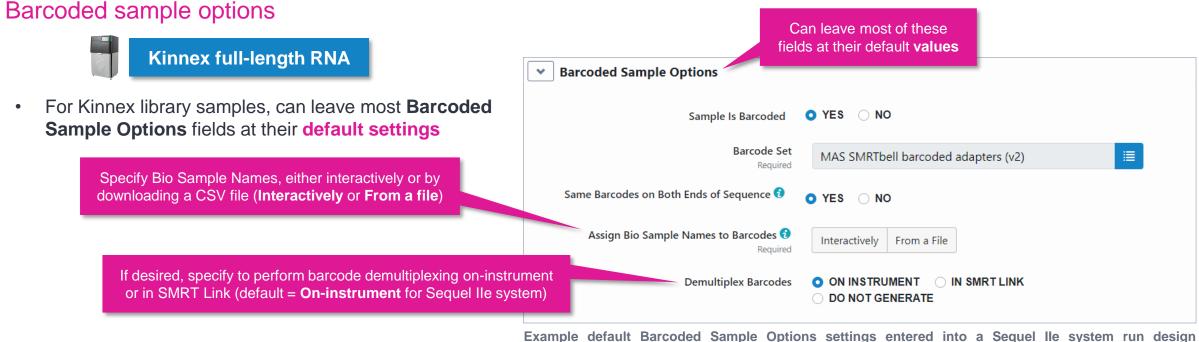


¹ Note: When sequencing a Kinnex library sample, if 'Overhand-SMRTbell Prep Kit 3.0' is mistakenly selected instead of 'SMRTbell Kinnex Prep kit' in the SMRTbell Adapter Design field, then a higher missing adapter rate (> 95%) and a slight degradation in barcode demultiplexing performance (~93-96% barcoded HiFi read yield) will be observed.

SMRT Link Run Design procedure for Sequel II/IIe systems (cont.)

Advanced options

٠

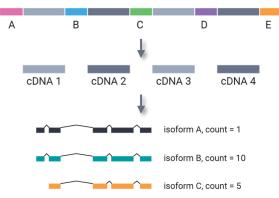

Pre-Extension Time

 \rightarrow 2 hrs

If desired, specify to use an alternative project folder for ٠ the Add Data to Project field

Example default Advanced Options settings entered into a Sequel lle system run design worksheet for a Kinnex full-length RNA library sample.

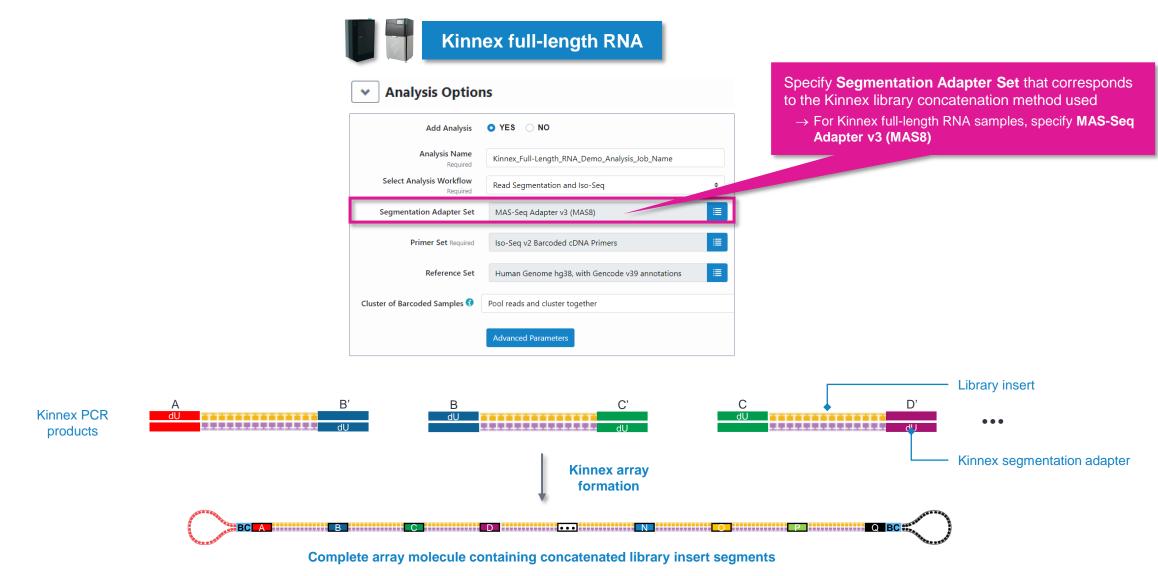
SMRT Link Run Design procedure for Sequel II/IIe systems (cont.)

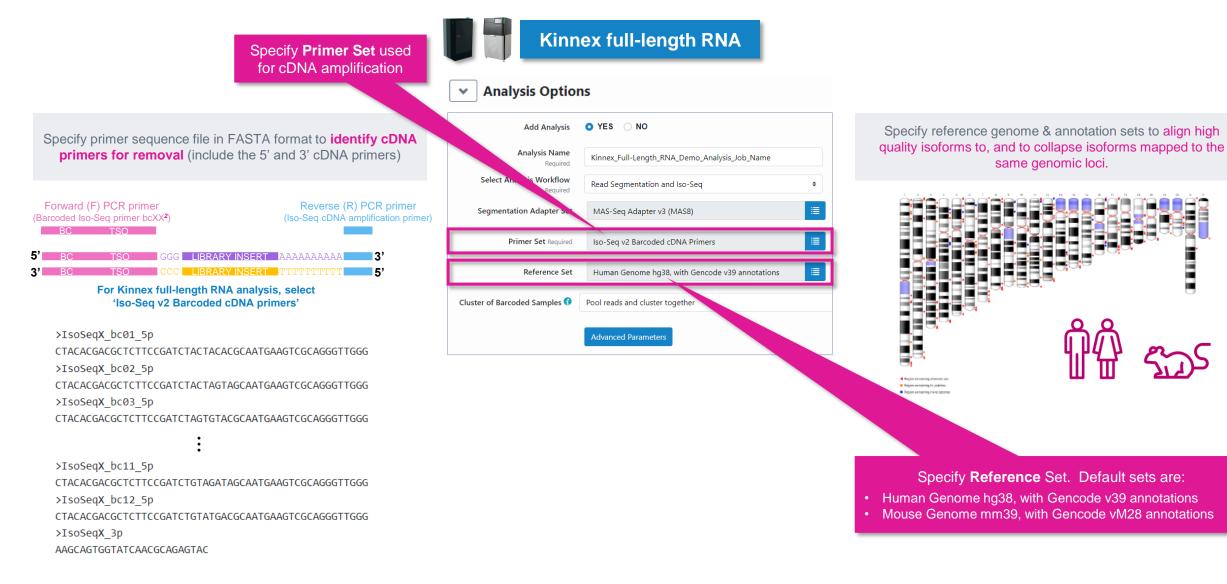


Example default Barcoded Sample Options settings entered into a Sequel IIe system run design worksheet for a Kinnex full-length RNA library sample.

SMRT Link Run Design analysis options for Revio system and Sequel II/IIe systems

 Analysis Optio 	ns Default = YES for Add Analysis	
Add Analysis	• YES NO	Analysis Workflow is automatically filled (Default = Read Segmentation and Iso-Se
Analysis Name Required	Kinnex_Full-Length_RNA_Demo_Analysis_Job_Name	
Select Analysis Workflow	Read Segmentation and Iso-Seq +	
Segmentation Adapter Set	MAS-Seq Adapter v3 (MAS8)	
Primer Set Required	Iso-Seq v2 Barcoded cDNA Primers	
Reference Set	Human Genome hg38, with Gencode v39 annotations	
Cluster of Barcoded Samples 😚	Pool reads and cluster together	
	Advanced Parameters	




Perform isoform-classification analysis to identify novel genes & isoforms with abundance information (raw counts & normalized counts per million)

Pace SMRT Link User Guide documentation for detailed descriptions of parameter settings for Read Segmentation and Iso-Seq analysis application.

SMRT Link Run Design analysis options for Revio system and Sequel II/IIe systems (cont.)

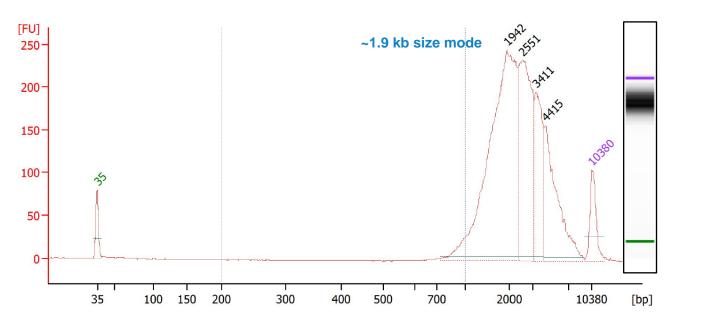
SMRT Link Run Design analysis options for Revio system and Sequel II/IIe systems (cont.)

See *SMRT Link User Guide* documentation for detailed descriptions of parameter settings for Read Segmentation and Iso-Seq analysis application. To view Iso-Seq v2 Barcoded cDNA primer sequences, go to SMRT Link Data Mangement module and select to view 'Barcode Sets' > 'Iso-Seq v2 Barcoded cDNA Primers'.

SMRT Link Run Design analysis options for Revio system and Sequel II/IIe systems (cont.)

.......

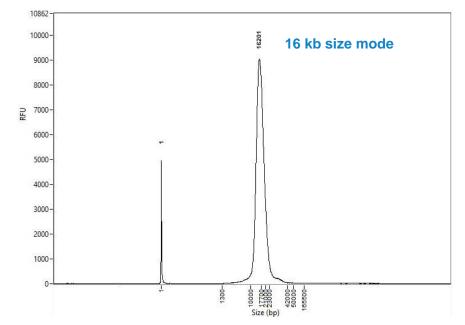
	Analysis Options	*
	Add Analysis 💿 YES 🗌 NO	A B C D E
	Analysis Name Required Kinnex_Full-Length_RNA_Demo_Analysis_Job_Name	Read segmentation (Up to 8-fold Kinnex de-concatenation)
	Select Analysis Workflow Required Read Segmentation and Iso-Seq	•
Specify how to perform read	Segmentation Adapter Set MAS-Seq Adapter v3 (MAS8)	
clustering for barcoded samples	Primer Set Required Iso-Seq v2 Barcoded cDNA Primers	Full-length cDNA barcode demultiplexing
	Reference Set Human Genome hg38, with Gencode v39 annotations	(up to 12-plex)
	Cluster of Barcoded Samples Pool reads and cluster together	Sample 1 Sample 2
	Advanced Parameters	
	Pool reads and cluster together +	Analyze pooled samples (default) Analyze by sampl
	select Cluster reads separately	
	Pool reads and cluster together	$\blacksquare \rightarrow \blacksquare \blacksquare \blacksquare \rightarrow \blacksquare$
	Specification of Cluster of Barcoded Samples setting	
	determines whether all FLNC reads will be pooled for	
	clustering (Does not apply to non-barcoded samples.)	


PacBie See SMRT Link User Guide documentation for detailed descriptions of parameter settings for Read Segmentation and Iso-Seq analysis application.

Kinnex full-length RNA example sequencing performance data

Example Kinnex full-length RNA library preparation QC results

Kinnex full-length RNA library prepared with human UHRR total RNA

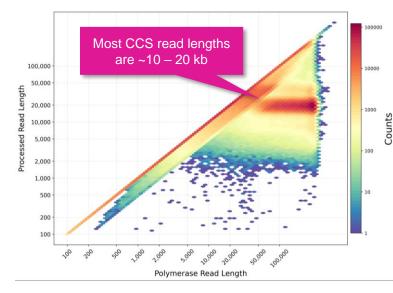

Amplified full-length cDNA QC

Example Bioanalyzer DNA sizing QC analysis results for amplified full-length cDNA generated from a universal human RNA reference (UHRR) total RNA sample.

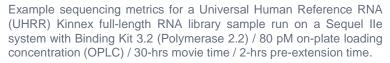
Final Kinnex library yield is typically sufficient to load ≥2 SMRT Cells

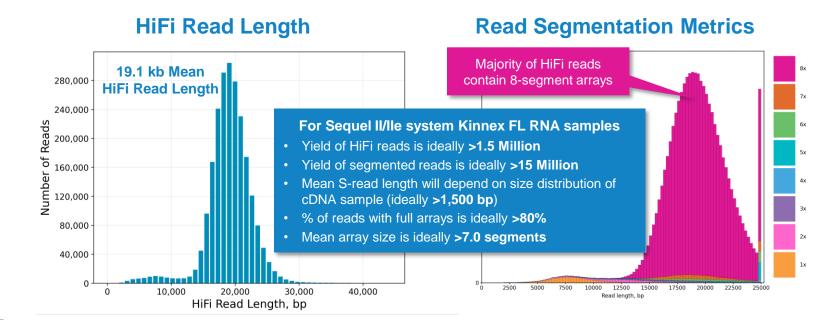
Final Kinnex full-length RNA library QC

Example Femto Pulse DNA sizing QC analysis results for final Kinnex full-length RNA library.


Total RNA input for cDNA synthesis	300 ng
cDNA input for Kinnex array formation	5900 ng
Post-nuclease treatment & final library cleanup yield (%) ¹	1460 ng (24.7%)

¹ Post-nuclease treatment & final cleanup yields typically ranged from ~10% to ~25% when using UHRR total RNA samples for Kinnex full-length RNA library construction.


Example sequencing performance for Kinnex full-length RNA libraries prepared with human cDNA


Sequel IIe system example data¹

Raw Data Report

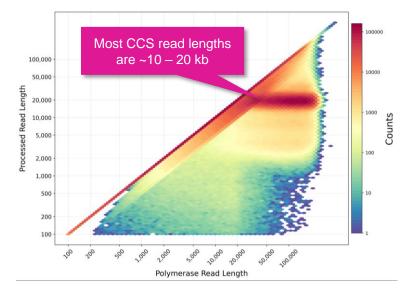
Raw Base Yield	652 Gb
Mean Polymerase Read Length	115.36 kb
P0	28%
P1	71%
P2	1%

HiFi Reads	2.3 M
HiFi Base Yield	43.2 Gb
Mean HiFi Read Length	19.1 kb
Median HiFi Read Quality	Q32
HiFi Read Mean # of Passes	10

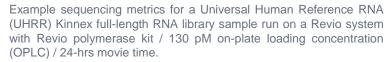
For UHRR Kinnex full-length RNA libraries, per-SMRT Cell 8M HiFi read counts typically ranged from \sim 2 – 3 Million depending on the final library insert size.

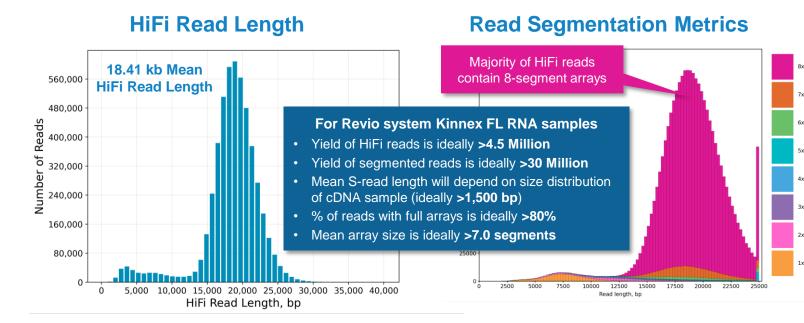
Reads	2,260,039
Segmented reads (S-reads)	17,213,165
Mean length of S-reads	2,420 bp
Percent of reads with full arrays	91.07%
Mean array size (concentration factor)	7.62

For UHRR Kinnex libraries, per-SMRT Cell 8M segmentation read counts were typically ~15 – 20 Million.



¹ HiFi read lengths, reads/data per SMRT Cell and other sequencing performance results can vary depending on DNA sample quality, insert size, *P1* loading performance & movie time. Note: Shorter library insert sizes (<15 kb), lower DNA quality samples, and suboptimal *P1* loading performance may result in HiFi data yields <30 Gb per Sequel II SMRT Cell 8M.


Example sequencing performance for Kinnex full-length RNA libraries prepared with human cDNA


Revio system example data¹

Raw Data Report

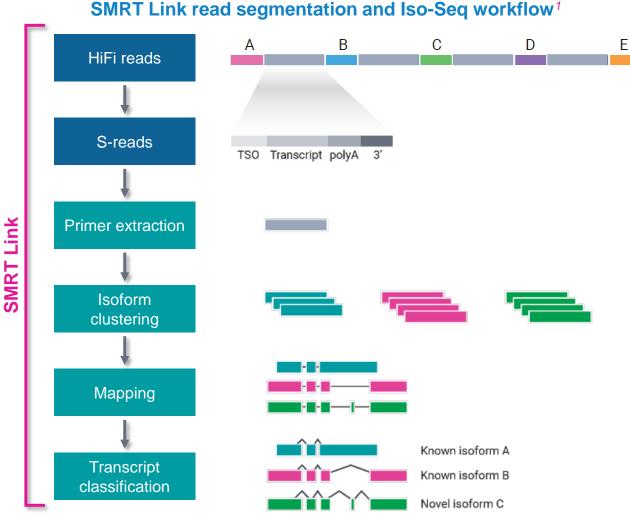
Raw Base Yield	1,168 Gb
Mean Polymerase Read Length	58.6 kb
P0	16%
P1	79%
P2	5%

HiFi Reads	5.1 M
HiFi Base Yield	93.47 Gb
Mean HiFi Read Length	18.41 kb
Median HiFi Read Quality	Q28
HiFi Read Mean # of Passes	7

For UHRR Kinnex full-length RNA libraries, per-Revio SMRT Cell HiFi read counts were typically \sim 5 – 6 Million depending on the final library insert size and *P1* loading performance.

Input HiFi Reads	5,027,154
Segmented reads (S-reads)	37,216,151
Mean length of S-reads	2,393 bp
Percent of reads with full arrays	85.84%
Mean array size (concentration factor)	7.40

For UHRR Kinnex libraries, per-Revio SMRT Cell segmentation read counts were typically ~30 – 45 Million.


¹ HiFi read lengths, reads/data per SMRT Cell and other sequencing performance results can vary depending on DNA sample quality, insert size, *P1* loading performance & movie time. Note: Shorter library insert sizes (<15 kb), lower DNA quality samples, and suboptimal *P1* loading performance may result in HiFi data yields <90 Gb per Revio SMRT Cell.

Kinnex full-length RNA data analysis workflow overview

Kinnex full-length RNA bioinformatics workflow overview

SMRT Link Read segmentation and Iso-Seq workflow processes HiFi reads generated from Kinnex full-length RNA libraries to produce classified isoforms with read counts that are compatible with tertiary analysis tools

Read segmentation

• HiFi reads are segmented into individual segmented reads (S-reads) that represent the original cDNA sequences

Primer extraction

Primers and polyA tails are removed, but also used to orient the read into 5' \rightarrow 3' orientation

Isoform clustering

- FLNC reads are clustered by their sequencing similarity to produce isoform consensus sequences
- This step is the last step of Iso-Seq analysis if no genome is provided

Mapping

• If a genome is provided, isoform consensus sequences from the previous step are mapped and further collapsed by their exonic structures to produce isoforms as GFF files for visualization

Transcript classification²

- If an annotation (e.g., Gencode) is provided, isoforms are classified against it using pigeon (the PacBio implementation of SQANTI3) to identify known and novel genes/isoforms
- The Iso-Seq workflow can jointly analyze pooled sample reads to produce a unified isoform annotation with per-sample read counts, both raw and normalized as counts per million (CPM)

PacBio ¹ See *SMRT Link User Guide* (Documentation) for detailed descriptions of parameter settings for Read Segmentation and Iso-Seq analysis application. (A video tutorial is also available for viewing.) ² Note: SMRT Link only supports transcript classification for human and mouse samples. Non-human/mouse samples will require customized annotation GTF files to be run via the command line.

SMRT Link Read Segmentation and Iso-Seq analysis video demonstration

Video demonstration of SMRT Link Read Segmentation and Iso-Seq application workflow for analysis of Kinnex full-length RNA samples

Analysis Application Required	Analysis Name
Read Segmentation and Iso-Seq \$	test
The Import Analysis Settings	Analysis Datasets
Associated Inputs	Displaying rows 1 to 1 out of 1
Segmentation Adapter Set	ID II Name # 21 3230211_KPoS_64007
MAS-Seq Adapter v3 (MAS8)	
Primer Set Required	
Iso-Seq v2 Barcoded cDNA Primers	
Reference Set	
Human Genome hg38, with Gencode v39 annotations	Demo video for Read Segmentation and Iso-Seq workflow
Cluster of Barcoded Samples 🕄	(SMRT Link v13.0+)
Pool reads and cluster together \$	
Advanced Parameters	 Workflow supports full-length isoform analysis for data generated on PacBio Sequel II/IIe and Revio systems using Kinnex full-length RNA kit
	End-to-end workflow begins with HiFi reads and outputs full-length isoform classifications with supporting read count information
YouTube	

Kinnex full-length RNA bioinformatics workflow recommendations

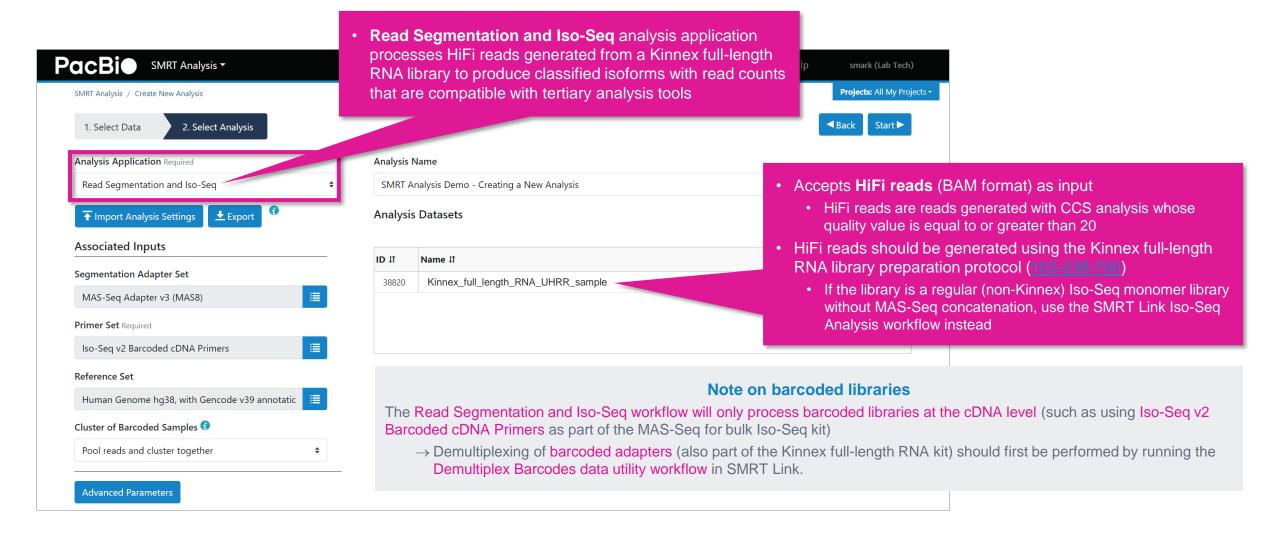
SMRT Link Read Segmentation and Iso-Seq workflow common considerations and recommendations for analysis of Kinnex full-length RNA data¹

Analysis recommendations for Iso-Seq data based on reference genome and annotation availability¹

- With SMRT Link v13, the **Read segmentation and Iso-Seq workflow** analysis application supports human and mouse reference genomes and annotations to produce classified isoforms with read counts.
- If working with other organisms, see table below for analysis recommendations

Available reference or annotation	Analysis workflow recommendation
Human or mouse	 Use the Iso-Seq workflow with preloaded human / mouse annotation to get mapped, unique isoforms with classifications and read count information (FASTA, GFF, TXT).
Model organism with good annotation	 Run Iso-Seq workflow with uploaded reference genome to get mapped, unique isoforms (FASTA, GFF) Generate pigeon-compliant annotation and use the command line for isoform classification with read count information (TXT)
Non-model organism with genome	 Run Iso-Seq workflow with uploaded reference genome to get mapped, unique isoforms (FASTA, GFF)
No genome	Run Iso-Seq workflow without reference genome to get unique isoforms (FASTA)

Kinnex full-length RNA bioinformatics workflow recommendations (cont.)


SMRT Link Read Segmentation and Iso-Seq workflow common considerations and recommendations for analysis of Kinnex full-length RNA data¹

Sequencing depth recommendations for Iso-Seq data based on experimental goals and study design

Example application	Human genetics disease studies	Biopharma for identifying highly expressed targets	Plant & animal whole genome annotation
Experimental goal	Isoform discovery and quantification of moderate-to-rare transcripts	Isoform discovery of high expressed transcripts	Comprehensive transcript annotation in a species
Example study design	Disease vs. normal tissues with multiple replicates	Disease cohort with >20+ samples	Plant or animal with multiple tissue types
Target depth of coverage per sample	10 M reads per sample	5 M reads per sample	≤5 M reads per tissue (of same species)
Comple multipleving1	Sequel II/IIe system: Up to 2 samples per SMRT Cell 8M (2-plex)	Sequel II/IIe system: Up to 3 samples per SMRT Cell 8M (3-plex)	Sequel II/IIe system: Up to 3 tissue types per SMRT Cell 8M (3-plex)
Sample multiplexing ¹	Revio system: Up to 4 samples per Revio SMRT Cell (4-plex)	Revio system: Up to 8 samples per Revio SMRT Cell (8-plex)	Revio system: Up to 8 tissue types per Revio SMRT Cell (8-plex) ²
SMRT Link data analysis workflows	Read Segmentation and Iso-Seq analysis ap classification file with per-sample full-length	plication with option to "pool reads and cluster read counts	together" to get a master isoform

SMRT Link Read Segmentation and Iso-Seq analysis application setup

Specify Read Segmentation and Iso-Seq analysis application in SMRT Link¹

SMRT Link Read Segmentation and Iso-Seq analysis application setup (cont.)

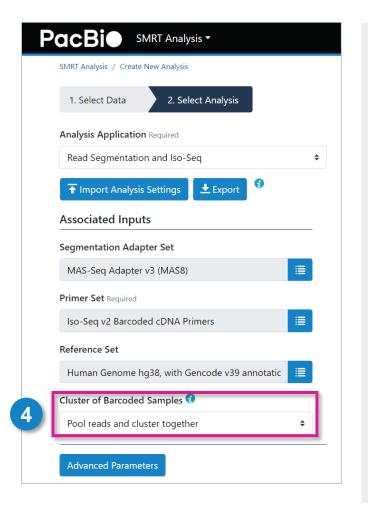
Specify Read Segmentation and Single-Cell Iso-Seq analysis application required associated inputs¹

SMRT Analy	rsis / Create N	New Analysis			
1. Selec	t Data	2. Select	t Analysis		
Analysis	Application	Required			
Read Se	egmentatior	n and Iso-Sec			\$
The Impo	ort Analysis	Settings	生 Export	•	
Associa	ted Input	s			
Segment	ation Adap	ter Set			
MAS-Se	eq Adapter v	v3 (MAS8)			≣
Primer Se	et Required				
lso-Seq	v2 Barcode	ed cDNA Prim	iers		
Reference	e Set				
Human	Genome hg	g38, with Ger	icode v39 a	nnotatic	≣
Cluster o	f Barcoded	Samples 闭			
Pool rea	ads and clus	ster together			\$

1. Segmentation Adapter Set (Default = MAS-Seq Adapter v3 (MAS8))

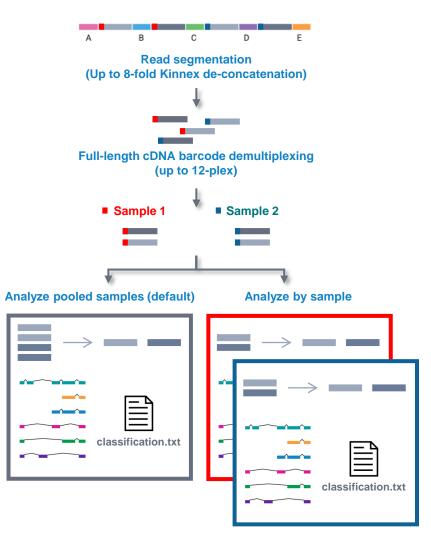
• Specify a FASTA file, provided by PacBio, containing segmentation adapters. If you need a custom segmentation adapter set, click Advanced Parameters and use a custom FASTA file formatted as described in the SMRT Link User Guide <u>documentation</u>.

2. Primer Set (Required) (Default = Iso-Seq v2 Barcoded cDNA Primers)

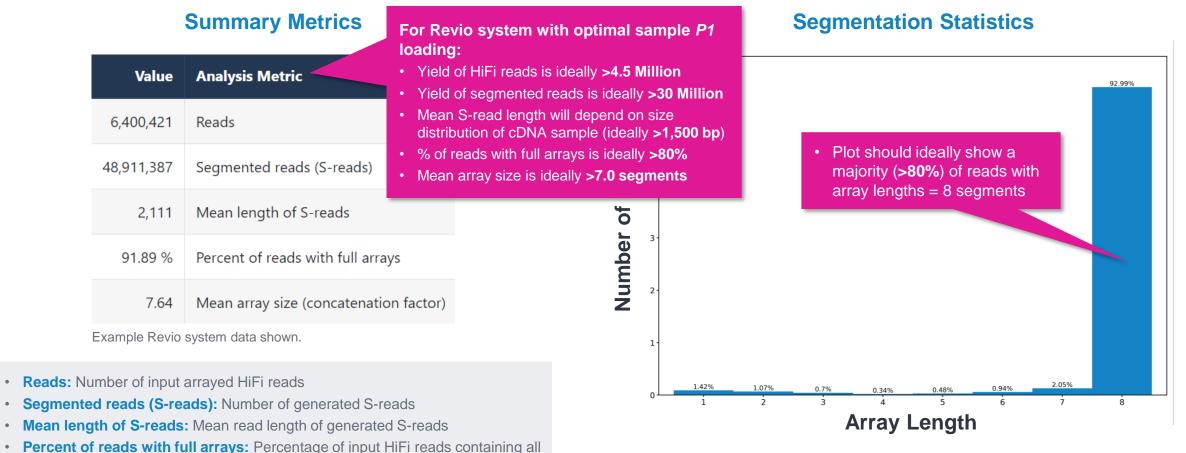

- Specify a primer sequence file in FASTA format to identify cDNA primers for removal. The primer sequence includes the 5' and 3' cDNA primers
- Primer IDs must be specified using the suffix _5p to indicate 5' cDNA primers and the suffix _3p to indicate 3' cDNA primers. The 3' cDNA primer should not include the Ts and is written in reverse complement. (See the <u>SMRT Link User Guide</u> for example Iso-Seq v2 Barcoded cDNA Primer IDs and sequences)
- Each primer sequence must be unique

3. Reference Set (Required)

- Specify one of two default reference genome and annotation sets to align high quality isoforms to, and to collapse isoforms mapped to the same genomic loci. The default sets are Human_hg38_Gencode_v39 and Mouse_mm39_Gencode_vM28 annotations
- Alternatively, choose other reference genomes (but not with annotations) that were custom-uploaded to SMRT Link
- The Reference Set can be left blank. If blank, the workflow will stop after the isoform clustering step (isoseq cluster)


SMRT Link Read Segmentation and Iso-Seq analysis application setup (cont.)

Specify Read Segmentation and Single-Cell Iso-Seq analysis application required associated inputs¹


4. Cluster of Barcoded Samples

- This option specifies barcoded samples that were barcoded at the cDNA level, where the (barcoded) cDNA primers are specified in the Primer Set option. This option does **not** address libraries that were barcoded using barcoded adapters
- Specify whether all FLNC reads will be pooled for clustering, then demultiplexed based on pooled result. Note: This setting does not apply to non-barcoded samples
- Specify Pool reads and cluster together if barcoded samples are from the same species, but different tissues, or samples of the same genes but different individuals. The samples are clustered with all barcodes pooled
- Specify Cluster reads separately if barcoded samples are from different species. The samples are clustered separately by barcode
- In either case, the samples on the results page are automatically named BioSample_1 through BioSample N

Example SMRT Link Read Segmentation data utility processing results¹ for Kinnex full-length RNA library prepared with human UHRR sample

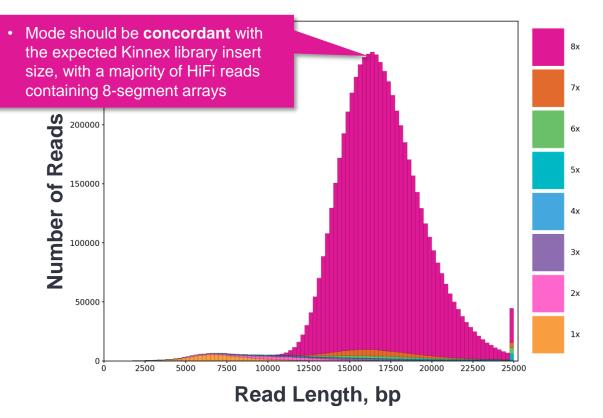
SMRT Link Read Segmentation data utility job report – Summary Metrics and Segmentation Statistics

Histogram distribution of the number of S-reads per HiFi read. (Example Revio system data shown.)

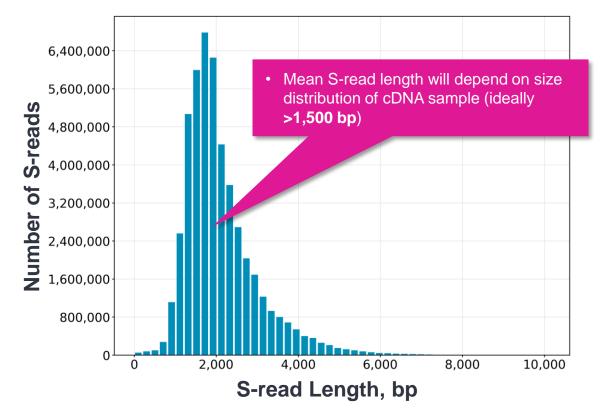
adapter sequences in the order listed in the segmentation adapter FASTA file

Mean array size: Mean number of fragments (or S-reads) found in input reads

•


•

¹ HiFi read lengths, reads/data per SMRT Cell and other sequencing performance results can vary depending on DNA sample quality, insert size, *P1* loading performance & movie time. Note: Refer to SMRT Link MAS-Seq troubleshooting guide (102-994-400) for example performance metrics typically achievable with Kinnex libraries under optimal P1 loading conditions. For Sequel IIe systems, we recommend aiming for ~60 - 80% P1 loading. For Revio system, we recommend aiming for ~50 - 70% P1 loading.


Example SMRT Link Read Segmentation data utility processing results¹ for Kinnex full-length RNA library prepared with human UHRR sample (cont.)

SMRT Link Read Segmentation data utility job report – Length of Reads and S-read Length Distribution

Length of Reads

S-read Length Distribution

Histogram distribution of the number of HiFi reads by read length, in base pairs. (Example Revio system data shown.)

Histogram distribution of the number of S-reads by HiFi read length, in base pairs. (Example Revio system data shown.)

¹ HiFi read lengths, reads/data per SMRT Cell and other sequencing performance results can vary depending on DNA sample quality, insert size, P1 loading performance & movie time. Note: Refer to SMRT Link MAS-Seq troubleshooting guide (<u>102-994-400</u>) for example performance metrics typically achievable with Kinnex libraries under optimal P1 loading conditions. For Sequel IIe systems, we recommend aiming for ~60 – 80% P1 loading. For Revio system, we recommend aiming for ~50 – 70% P1 loading.

SMRT Link Iso-Seq analysis job report – Read Classification statistics

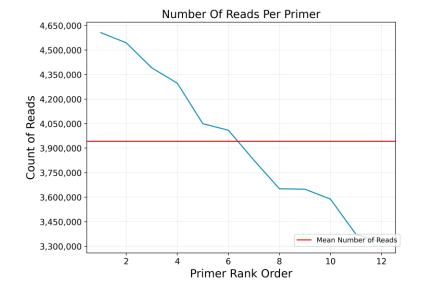
Summary Metrics

Value	Analysis Metric
46,396,697	Reads
44,875,144	Reads with 5' and 3' Primers
44,784,675	Non-Concatamer Reads with 5' and 3' Primers
44,739,994	Non-Concatamer Reads with 5' and 3' Primers and Poly-A Tail (FLNC Reads)
1,981	Mean Length of FLNC Reads
12	Unique Primers
3,739,595	Mean Reads per Primer
4,379,484	Max. Reads per Primer
3,143,785	Min. Reads per Primer
1,521,553	Reads without Primers
96.22%	Percent Bases in Reads with Primers
96.72%	Percent Reads with Primers

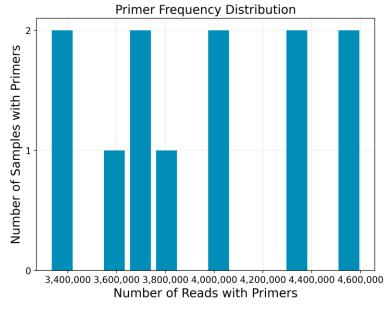
Example Revio system data shown.

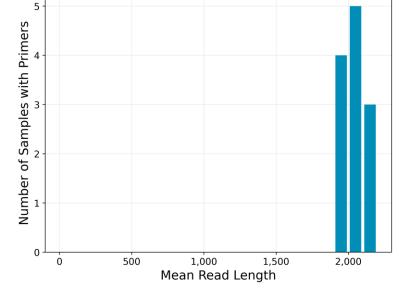
- Reads: Total number of CCS reads
- Reads with 5' and 3' Primers: Number of CCS reads with 5' and 3' cDNA primers detected
- Non-Concatemer Reads with 5' and 3' Primers: Number of nonconcatemer CCS reads with 5' and 3' primers detected
- Non-Concatemer Reads with 5' and 3' Primers and Poly-A Tail (FLNC Reads): Number of nonconcatemer CCS reads with 5' and 3' primers and polyA tails detected. This is usually the number for full-length, nonconcatemer (FLNC) reads, unless polyA tails are not present in the sample
- Mean Length of FLNC Reads: Mean length of the non-concatemer CCS reads with 5' and 3' primers and polyA tails detected
- Unique Primers: Number of unique primers in the sequence
- · Mean Reads per Primer: Mean number of CCS reads per primer
- Max. Reads per Primer: Maximum number of CCS reads per primer
- Min. Reads per Primer: Minimum number of CCS reads per primer
- · Reads without Primers: Number of CCS reads without a primer
- Percent Bases in Reads with Primers: Percentage of bases in CCS reads in the sequence data that contain primers
- · Percent Reads with Primers: Percentage of CCS reads in the sequence data that contain primers

SMRT Link Iso-Seq analysis job report – Read Classification statistics


Primer Data

Bio Sample Name 🎝	Primer Name J	CCS Reads If	Mean Primer Quality ↓↑	Reads with 5' and 3' Primers I	Non-Concatamer Reads with 5' and 3' Primers ${}^{\downarrow\uparrow}$	Non-Concatamer Reads wit
BioSample_1	lsoSeqX_bc01_5plsoSeqX_3p	3,648,886	99.6	3,648,886	3,641,475	3,638,289
BioSample_2	lsoSeqX_bc02_5plsoSeqX_3p	3,826,584	99.7	3,826,584	3,818,994	3,815,554
BioSample_3	lsoSeqX_bc03_5plsoSeqX_3p	4,296,994	99.7	4,296,994	4,288,437	4,284,413
BioSample_4	lsoSeqX_bc04_5plsoSeqX_3p	3,588,147	99.7	3,588,147	3,580,832	3,577,622
BioSample_5	lsoSeqX_bc05_5plsoSeqX_3p	4,543,731	99.7	4,543,731	4,534,661	4,530,441
BioSample_6	lsoSeqX_bc06_5plsoSeqX_3p	4,606,161	99.7	4,606,161	4,596,642	4,592,382
BioSample_7	lsoSeqX_bc07_5plsoSeqX_3p	4,009,556	99.7	4,009,556	4,001,451	3,997,812
BioSample_8	lsoSeqX_bc08_5plsoSeqX_3p	3,651,440	99.7	3,651,440	3,644,176	3,641,097
BioSample_9	lsoSeqX_bc09_5plsoSeqX_3p	4,390,535	99.7	4,390,535	4,381,510	4,377,425
BioSample_10	lsoSeqX_bc10_5plsoSeqX_3p	4,049,234	99.7	4,049,234	4,041,043	4,037,382
BioSample_11	lsoSeqX_bc11_5plsoSeqX_3p	3,323,541	99.7	3,323,541	3,316,702	3,313,724
BioSample_12	lsoSeqX_bc12_5plsoSeqX_3p	3,372,840	99.7	3,372,840	3,365,834	3,362,745
Bio Sample 4	No Primer	1,603,738	0.0	0	0	0


Example Revio system data shown.

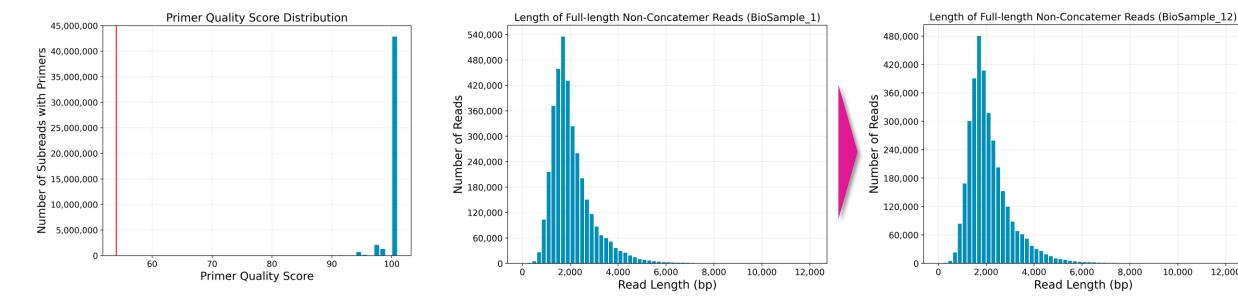

- Bio Sample Name: Name of the biological sample associated with the primer
- Primer Name: A string containing the pair of primer indices associated with this biological sample
- CCS Reads: Number of CCS reads associated with the primer
- Mean Primer Quality: Mean primer quality associated with the primer
- Reads with 5' and 3' Primers: Number of CCS reads with 5' and 3' cDNA primers detected
- Non-Concatemer Reads with 5' and 3' Primers: Number of non-concatemer CCS reads with 5' and 3' primers detected
- Non-Concatemer Reads with 5' and 3' Primers and Poly-A Tail: Number of non-concatemer CCS reads with 5' and 3' primers and polyA tails detected. This is usually the number for full-length, non-concatemer (FLNC) reads, unless polyA tails are not present in the sample.

SMRT Link Iso-Seq analysis job report – Read Classification statistics

Primer Read Statistics

Mean Read Length Distribution

Number Of Reads Per Primer: Maps the number of reads per primer, sorted by primer ranking


Primer Frequency Distribution: Maps the number of samples with primers by the number of reads with primers

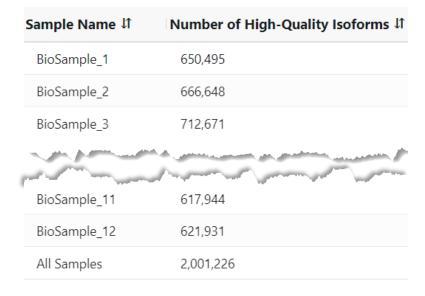
Mean Read Length Distribution: Maps the read mean length against the number of samples with primers

SMRT Link Iso-Seq analysis job report – Read Classification statistics

Primer Quality Scores

Primer Quality Score Distribution: Histogram of primer scores

Length of Full-Length Non-Concatemer Reads: Per-sample histograms of the read length distribution of non-concatemer CCS reads with 5' and 3' primers and polyA tails detected


8,000

10,000

12,000

SMRT Link Iso-Seq analysis job report – Transcript Clustering statistics

Summary Metrics

Read Length of Consensus Isoforms (BioSample 1) Read Length of Consensus Isoforms (All Samples) 225.000 72,000 200,000 64.000 175,000 spead 48,000 Reads 120,000 Ъ 125,000 Ⴆ _{40,000} Nu per 100,000 75,000 50,000 16.000 25,000 8,000 2.000 4.000 6.000 6,000 8,000 2.000 4.000 10.000 Read Length (bp) Read Length (bp)

Length of Consensus Isoforms

- Sample Name: Sample name for which the following metrics apply
- Number of High-Quality Isoforms: Number of consensus isoforms that have an estimated accuracy above the specified threshold
- · Length of Consensus Isoforms: Per-sample histograms of the consensus isoform lengths and the distribution of isoforms exceeding a read length cutoff. Also includes a single histogram plot for all samples.

8.000

10.000

SMRT Link Iso-Seq analysis job report – Transcript Mapping and Classification statistics

Sample Name ↓î	Total Unique Genes ↓î	Total Unique Genes, filtered ↓↑	Total Unique Isoforms ↓↑	Total Unique Isoforms, filtered ↓↑
BioSample_1	127,560	18,576	317,862	127,517
BioSample_2	131,678	18,833	325,744	129,550
BioSample_3	143,056	19,089	348,790	135,483
BioSample_4	125,866	18,529	315,326	126,923
BioSample_5	148,422	19,451	360,453	138,918
BioSample_6	149,269	19,495	361,022	138,742
BioSample_7	136,195	18,867	336,140	132,612
BioSample_8	128,393	18,608	317,667	126,641
BioSample_9	145,921	19,291	353,923	136,903
BioSample_10	137,496	18,999	338,295	133,063
BioSample_11	120,079	18,308	301,435	122,466
BioSample_12	120,440	18,355	303,142	123,454

Summary Metrics (All samples)

Example Revio system data shown.

PacBi

- Sample Name: Sample name for which the following metrics apply
- Total unique genes: The total number of unique genes across all cells.
- Total unique genes, filtered: The total number of unique genes, after filtering out reads based on the SQANTI transcript filtering criteria.
- Total unique isoforms: The total number of unique isoforms across all cells
- Total unique isoforms, filtered: The total number of unique isoforms across all cells, after filtering out reads based on the SQANTI transcript filtering criteria.

65

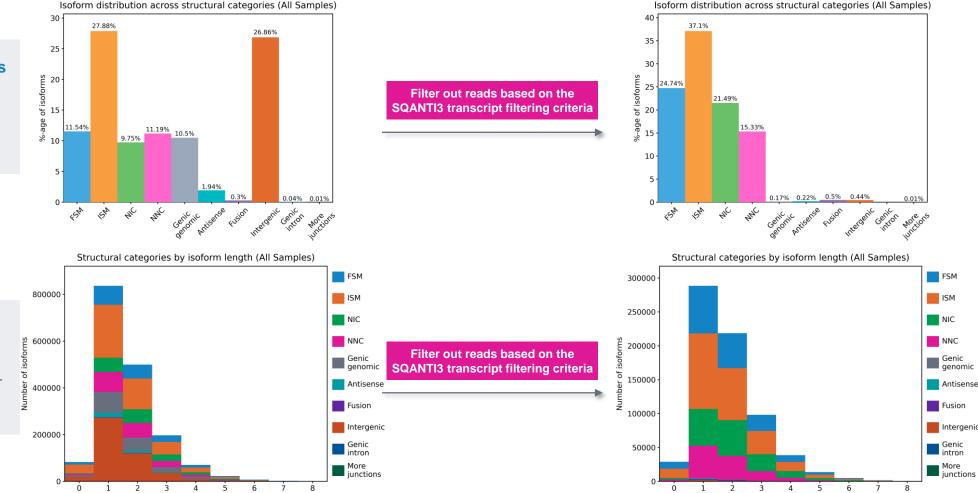
SMRT Link Iso-Seq analysis job report – Transcript Mapping and Classification statistics

Category ↓î	Count ↓î	CAGE Detected ↓↑	CAGE Detected, (%	6) ↓î ∣polyA Detected ↓î	polyA Detected, (%) ↓↑
FSM	171662	83485	48.63%	92562	53.92%
ISM	257444	32719	12.70%	158888	61.71%
NIC	149131	97650	65.47%	78854	52.87%
NNC	106396	67432	63.37%	57440	53.98%
Antisense	1501	324	21.58%	923	61.49%
Fusion	3446	2021	58.64%	1901	55.16%
More junctions	83	49	59.03%	55	66.26%
Genic intron	0	0	0.00%	0	0.00%
Genic genomic	1166	524	44.93%	704	60.37%
Intergenic	3073	285	9.27%	2441	79.43%

Transcript Classification, filtered (All samples)

Example Revio system data shown.¹

- Category: Transcript classification² assigned by the classification and filtering tool pigeon, based on the SQANTI3 software
- Count: The number of transcripts, after filtering out reads based on the SQANTI filtering criteria, in a specific classification
- CAGE Detected: The number of transcripts where the transcription start site falls within 50 bp of an annotated CAGE (Cap Analysis of Gene Expression) peak site
- CAGE Detected, (%): The percentage of transcripts where the transcription start site falls within 50 bp of an annotated CAGE peak site
- polyA Motif Detected: The number of transcripts where a known polyA motif is detected upstream of the transcription end site
- polyA Motif Detected, (%): The percentage of transcripts where a known polyA motif is detected upstream of the transcription end site


¹ Note: Unfiltered transcript classification data are also displayed in the Iso-Seq analysis job report.

PacBi Refer to the SMRT Link User Guide (Documentation) for descriptions of transcript classification categories (e.g., FSM – Full splice match, ISM – Incomplete splice match, etc.).

SMRT Link Iso-Seq analysis job report – Transcript Mapping and Classification statistics

Transcript Classification Plots

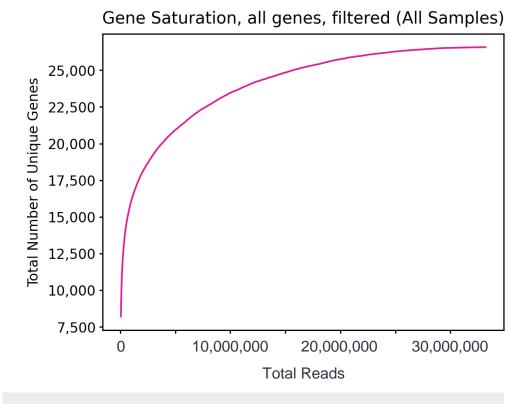
Isoform length (kb)

Transcript Classification Plots, Filtered

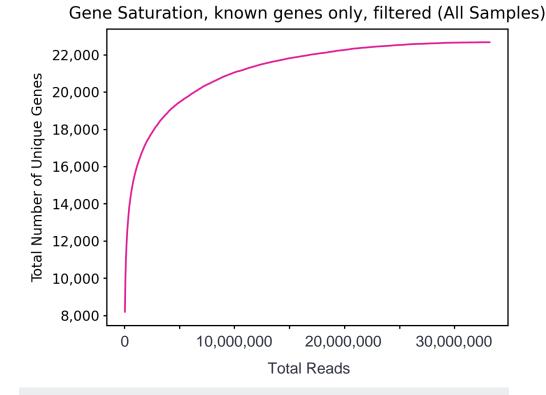
Isoform length (kb)

Isoform distributions across structural categories:

 Distribution of the % of isoforms by structural categories


Example Revio system data shown.

Structural categories by isoform lengths:


 Histogram display of the number of isoforms by their length in kb and their structural category

Example Revio system data shown.

SMRT Link Iso-Seq analysis job report – Transcript Mapping and Classification statistics

Gene Saturation

Gene Saturation, all genes, filtered: Saturation plot showing the level of gene saturation for all genes, after filtering out reads based on the SQANTI transcript filtering criteria

Gene Saturation, known genes only, filtered: Saturation plot showing the level of gene saturation, for unique known genes only (genes annotated in the reference annotation) per cell, after filtering out reads based on the SQANTI transcript filtering criteria

File Downloads tab

File ↑ Size ↓↑ Type ↓↑ Image: Non-passing reads, unaligned 4 GB bam Image: Report read_segmentation 3 KB JsonReport
Exercise Report read_segmentation 3 KB JsonReport
SMRT Link Log 13 KB log
Segmented Reads, passing, unaligned 65 GB bam
UHRR_verification_DL_bc4 (demux1) (Bio Sample 4) Segmented Reads 20 KB ConsensusReadSet
Unique mapped transcripts, GFF (All Samples) 895 MB gff
Unique mapped transcripts, classification TXT (All Samples) 728 MB txt
Unique mapped transcripts, filtered, GFF (All Samples) 599 MB gff
Unique mapped transcripts, filtered, classification TXT (All Samples) 307 MB txt
Unique mapped transcripts, filtered, junctions TXT (All Samples) 624 MB txt
Unique mapped transcripts, junctions TXT (All Samples) 771 MB txt

Files shown in the File Downloads tab are available on the analysis results page. Additional files are also available on the SMRT Link server in the analysis output directory.

Refer to <u>SMRT Link user guide</u> for descriptions of downloadable output files

- These files are useful for visualizing isoform structures in Integrative Genomics Viewer (IGV) / UCSC genome browser and enable understanding of why an isoform is novel/known, etc.
 - GFF file containing unique mapped transcripts after filtering
 - Text file containing unique mapped transcript classifications against annotations, after filtering
 - Text file containing information about unique mapped transcript junctions, after filtering

Technical documentation & applications support resources

Technical resources for Kinnex full-length RNA library preparation, sequencing & data analysis

RNA sample preparation resources

• Note: The products below have not been tested or validated by PacBio but are listed here as examples of third-party kits used by other PacBio customers for isolating total RNA for PacBio RNA sequencing (Iso-Seq) applications

Kit type	Product name				
mRNA isolation	Ambion Poly(A) Purist MAG Kit [<u>Link</u>]				
	Qiagen RNeasy Plus Kits [Link]				
Total DNA is plation	Sigma Spectrum Plant Total RNA Kit [Link]				
Total RNA isolation	iNtRON Easy Spin Total RNA [Link]				
	TRIzol Reagent can be used to isolate total RNA from tissues or cells, including lipid-rich and difficult samples [Link]				
RNA stabilization & storage	RNALater is an aqueous, nontoxic tissue storage reagent that rapidly permeates tissues to stabilize and protect cellular RNA [Link]				

Technical resources for Kinnex full-length RNA library preparation, sequencing & data analysis (cont.)

Kinnex full-length RNA library preparation literature & other resources

- Application note Kinnex full-length RNA kit for isoform sequencing (<u>102-326-591</u>)
- Procedure & checklist Preparing Kinnex libraries using Kinnex full-length RNA kit (103-238-700)
- Technical overview Kinnex kits for single-cell RNA, full-length RNA and 16S rRNA sequencing (103-343-700)
- Technical overview Kinnex library preparation using Kinnex full-length RNA kit (103-344-700)
- Video tutorial SMRT Link Sample Setup and Run Design setup procedure for Kinnex kits [Link]
- Whitepaper Bulk and single-cell isoform sequencing for human disease research (<u>102-326-576</u>)

Data analysis resources

- Application note Bioinformatics tools for full length isoform sequencing (<u>102-326-593</u>)
- SMRT Link MAS-Seq troubleshooting guide (<u>102-994-400</u>)
- SMRT Link software installation guide [Link]
- SMRT Link user guide [Link]
- SMRT Tools reference guide [Link]
- Video tutorial Read Segmentation and Iso-Seq workflow in SMRT Link [Link]

Technical resources for Kinnex full-length RNA library preparation, sequencing & data analysis (cont.)

Publications

- Schertzer, M.D. et al. (2023) Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox. BioRxiv preprint [<u>Link</u>]
- Al'Khafaji, A.M. et al. (2023) High-throughput RNA isoform sequencing using programmable cDNA concatenation. Nature biotechnology. [Link]

Webinars

- PacBio Iso-Seq social club webinar (2022) Introduction to Iso-Seq method [Link]
- PacBio Iso-Seq social club webinar (2022) SQANTI3 for isoform classification and annotation [Link]
- PacBio Iso-Seq social club webinar (2022) TappAS for isoform differential expression analysis [Link]

Example PacBio data sets

Application	Dataset	Data type	PacBio system
Kinnex full-length RNA sequencing	Homo sapiens – universal human reference RNA (UHRR) [<u>Link</u>]	HiFi long read	Sequel II & Revio systems
	Homo sapiens – HG002 [<u>Link</u>]	HiFi long read	Revio system
	Homo sapiens – Heart [Link]	HiFi long read	Revio system
	Homo sapiens – Cerebellum [Link]	HiFi long read	Revio system

PacBio

www.pacb.com

Research use only. Not for use in diagnostic procedures. © 2024 Pacific Biosciences of California, Inc. ("PacBio"). All rights reserved. Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third-party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at pacb.com/license. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio, Onso, Apton, Kinnex, and PureTarget are trademarks of PacBio.