

SMRT® Link
API use cases

Research use only. Not for use in diagnostic procedures.

PN 103-720-500 Version 01 (August 2025)

© 2025 Pacific Biosciences of California, Inc. (“PacBio”)

Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors
or omissions in this document.

PACBIO DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESS, STATUTORY, IMPLIED
OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL PACBIO BE
LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, PURSUANT TO ANY STATUTE, OR ON ANY OTHER BASIS
FOR SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR INDIRECT DAMAGES IN CONNECTION WITH
(OR ARISING FROM) THIS DOCUMENT, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT PACBIO IS
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or
third party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license
terms at https://www.pacb.com/legal-and-trademarks/product-license-and-use-restrictions/.

Trademarks:

Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel,
Nanobind, SBB, Revio, Onso, Apton, Kinnex, PureTarget, SPRQ, and Vega are trademarks of PacBio.

PacBio

1305 O’Brien Drive Menlo Park,
CA 94025 www.pacb.com

http://www.pacb.com/legal-and-trademarks/product-license-and-use-restrictions/
http://www.pacb.com/

SMRT® Link web services API use cases

Introduction .. 4

Accessing the API ... 4

Viewing the API endpoints ... 4

Connecting to the Services API securely ... 5

Managing SMRT Link API tokens .. 5

Managing SMRT Link Cloud API tokens .. 9

How to set up a run design ... 10

How to get recent runs .. 10

How to monitor the progress of a SMRT Link run .. 12

How to run jobs using services ... 14

How to import a dataset .. 15

Searching for a Data Set .. 15

How to capture run-level summary metrics .. 16

How to get SMRT Link Data Set reports by using the UUID .. 16

How to get QC metrics for a specific collection .. 17

How to get QC and reports for a specific SMRT Link run .. 17

How to set up a SMRT Link analysis job for a specific workflow .. 19

How to query job history ... 22

How to copy and rerun a SMRT Link analysis ... 24

How to run an analysis on all collections in a run ... 24

How to delete a SMRT Link job .. 26

How to create and manipulate a Project ... 28

How to retrieve mapping report metrics from an analysis job ... 29

 SMRT Link API use cases

4

Introduction
The SMRT Link web services API, provided by PacBio®, allows integration of SMRT Link with third-
party software. It is also used for designing runs, querying new data from the instrument, and
starting secondary analyses.

This document describes common tasks performed using the SMRT Link web services API and
provides "how to" examples for accomplishing these tasks.

This guide is applicable for SMRT Link v25.1 and up and SMRT Link Cloud v25.3 and up. SMRT Link
and SMRT Link Cloud share similar source code. They primarily differ in how they are accessed and in
API key generation. The following examples are for a local SMRT Link installation; however they can be
adapted for SMRT Link Cloud by updating the URL for SMRT Link Cloud as shown in Accessing the API.

Accessing the API
SMRT Link

Note: For clarity, all of the API examples in this document use the unauthenticated, insecure endpoints. In a
default SMRT Link installation, these are available from local host on port 9091. If you are connecting
from a remote host and/or you require SSL or authentication, you will instead go through the API
gateway layer, which uses port 8243 and adds the prefix /SMRTLink/1.0.0. For example, with default
installer settings, these two URLs refer to the same endpoint (assuming that the SMRT Link server is
running on localhost):

http://localhost:9091/smrt-link/datasets/ccsreads

https://{dnsName}:8243/SMRTLink/1.0.0/smrt-link/datasets/ccsreads

Where {dnsName} references the fully qualified domain name.

SMRT Link Cloud

SMRT Link Cloud’s API can be accessed at https://smrtlink-api.sl.pacbcloud.com/smrt-
link The following example accessing an endpoint
https://smrtlink-api.sl.pacbcloud.com/smrt-link/import-run-design

Viewing the API endpoints
Information on the SMRT Link web services API endpoints, including definitions and examples, is
available as a Swagger page included with SMRT Link, accessible at:

SMRT Link: https://{dnsname}:8243/sl/docs/services/#/default

SMRT Link Cloud: https://smrtlink.pacbcloud.com/docs/services/

Not all endpoints are shared between SMRT Link and SMRT Link Cloud as SMRT Link Cloud does not include
SMRT Analysis. Please reference your installations Swagger page for all available endpoints.

 SMRT Link API use cases

5

Connecting to the Services API securely
SMRT Link v25+ restricts access to the services port (Default = 9091) to clients running on localhost or
connecting via the secure (HTTPS) API gateway on port 8243, with authentication credentials. The
default API gateway combines NGINX for HTTPS, KrakenD for API management, and Keycloak for
authentication.

If you only connect from localhost, the existing clients will continue to work as long as you specify
localhost or 127.0.0.1and not the full host/domain name. If you are running any external database or
automation programs that connect to the SMRT Link API, this section describes how to adapt your
code to versions 25 and up.

Use caution when embedding user credentials in shell scripts or source code, as this may expose
them in log files or shell history. We recommend that automated clients such as LIMS systems use a
special- purpose account in Keycloak distinct from any system users. For example, the SMRT Link
installation process automatically creates a user in Keycloak for the Revio® and Vega™ systems to
use when connecting. Since this user is only known to the SMRT Link API gateway, it cannot be used
for any purpose other than connecting to the SMRT Link API. Instructions for creating new SMRT Link
users in Keycloak can be found in the SMRT Link 25 software installation guide.

 Managing SMRT Link API tokens
Secure API access requires passing encoded authentication credentials in the HTTP header to a given
endpoint URL. This is a two-step process: First the client requests an access token providing a valid
username and password, then connects to the API endpoint using the access token. The token
remains valid for up to two hours (7200 seconds), but several caveats about token expiry are
discussed below.

1. POST a request to https://{dnsName}:8243/token with these HTTP headers:

Content-Type: application/x-www-form-urlencoded
Authorization: Basic
S01MejVnN2ZibXg4UlZGS0tkdTBOT3JKaWM0YTo2TmpSWEJjRmZMWk93SGMwWGxpZGl6NHl3Y3Nh

and this content, replacing <user> and <password> with the actual credentials:

{
"grant_type": "password",
"username": "<user>",
"password": "<password>",
"scope": "welcome run-design run-qc openid analysis sample-setup data-

management userinfo"
}

The "Basic" authorization identifies the client to the API gateway; for convenience we use hard-
coded client registration credentials in SMRT Link, shown above. (The string passed here is a
base-64 encoding of combined user and password strings.)

The client response will look something like below: (This is an example of the response data
model; the actual token string may be hundreds of characters long.)

 SMRT Link API use cases

6

{
'access_token': '<ACCESS_TOKEN STRING>',
'id_token': '<id_token>',
'expires_in': 6272,
'token_type': 'Bearer',
'scope': 'analysis data-management openid run-design run-qc userinfo',
'refresh_token': '<TOKEN STRING>'

}

2. Perform the API client call. The URL must now include the prefix /SMRTLink/1.0.0, and use
HTTPS port 8243. For example, these calls are equivalent:

GET http://localhost:9091/status
GET https://{dnsName}:8243/SMRTLink/1.0.0/status

Also note that all service endpoints that were originally prefixed with /secondary-analysis now
need to use /smrt-link instead, for example:

GET http://localhost:9091/secondary-analysis/datasets/ccsreads

now becomes:

GET https://{dnsName}:8243/SMRTLink/1.0.0/smrt-link/datasets/ccsreads
These HTTP headers are required, replacing <ACCESS_TOKEN_STRING> with the ‘access_token’
field’s value from the response in Step 1:

Content-type: application/json
Authorization: Bearer <ACCESS_TOKEN_STRING>

3. The access token remains valid for the duration specified by expires_in (in seconds). In practice,
we find it safest to refresh sooner than this to avoid clock skew issues. You can use the refresh
token to request a new access_token instead of passing the user/password credentials:

{
"grant_type": "refresh_token",
"refresh_token": "<refresh_token>"

}

This is posted to the same /token endpoint as in Step 1, with the same headers. Note however
that if you have multiple clients running simultaneously, the refresh mechanism will effectively lead
to a race condition, therefore re-authenticating each time is recommended if the clients are running
for longer than the expiry time.

4. You can revoke an access token by POSTing to

/revoke: POST https://{dnsName}:8243/revoke

Use the same headers as Step 1, and this body:

{
"token": "<access_token>",
"token_type_hint": "access_token"

}

This is what the logout button in SMRT Link does. It is not, however, necessary for non-browser client
applications.

 SMRT Link API use cases

7

As a compact practical example, these Linux commands show how to use the secure API with the curl l and
jq utilities

AUTH_TOKEN=$(curl -k -s -d
"grant_type=password&username=$API_USER&password=$API_PASS&scope=sample-setup+runs+data-
management+analysis+userinfo+openid" https://{dnsName}:8243/token | jq -r .access_token)

curl -k -s -H "Authorization: Bearer $AUTH_TOKEN"
https://{dnsName}:8243/SMRTLink/1.0.0/status

Here the API_USER and API_PASS variables should contain the actual user credentials; again, use
caution when passing sensitive authentication information. Note that curl internally converts the
hard-coded
--user credentials to the appropriate basic authorization header, and also sets the Content-Type header
automatically.

SSL security features

The full SSL/HTTPS implementation includes several checks designed to prevent "man-in-the-middle"
attacks by hackers, including the reliance on central certificating authorities to sign SSL keys, which are
also tied to specific host names. The default SMRT Link installation uses a generic "self-signed"
certificate that can optionally be replaced with a user-provided official certificate for that site. If this is
not done, or if you encounter other problems with SSL security features, you may need to disable these
features. This does not eliminate encryption or authentication, but it is generally discouraged by HTTP
client libraries and tools. For example, in the shell commands shown in the previous section, the -k flag
tells curl to disable SSL certificate verification.
Python example

The following source code provides a complete working example of a simple authenticated client call
using only the Python 3.7 standard library plus the request tts module, equivalent to the curl commands
above:

class APIConstants(object):

These client registration credentials are valid for every SMRT Link

server (and are also used by the SL UI)

SECRET = "KMLz5g7fbmx8RVFKKdu0NOrJic4a"

CONSUMER_KEY = "6NjRXBcFfLZOwHc0Xlidiz4ywcsa"

SCOPES = ["welcome", "run-design", "run-qc", "openid", "analysis",

"sample-setup", "data-management", "userinfo"]

def _create_auth(secret, consumer_key):

return base64.b64encode(":".join([secret, consumer_key]).encode("utf-8"))

def _get_token(url, user, password, scopes, secret, consumer_key):

basic_auth = _create_auth(secret, consumer_key).decode("utf-8")

headers = {

"Authorization": "Basic {}".format(basic_auth),

"Content-Type": "application/x-www-form-urlencoded"

}
scope_str = " ".join({s for s in scopes})
payload = dict(grant_type="password",

username=user,

 SMRT Link API use cases

8

password=password,

scope=scope_str)

verify is false to disable the SSL cert verification
return requests.post(url, payload, headers=headers, verify=False)

def get_smrtlink_auth_token(user, password, url):

r = _get_token(url, user, password, APIConstants.SCOPES, APIConstants.SECRET,
APIConstants.CONSUMER_KEY)

r.raise_for_status()

j = r.json()

access_token = j['access_token']

refresh_token = j['refresh_token']

scopes = j['scope'].split(" ")

return access_token, refresh_token, scopes

def _to_headers(access_token):

return {

"Authorization": "Bearer {}".format(access_token),

"Content-type": "application/json"

}

def _get_endpoint(api_path, access_token):

api_url = "https://{h}:8243/SMRTLink/1.0.0{p}".format(h=host, p=api_path)

headers = _to_headers(access_token)

verify=False disables SSL verification

response = requests.get(api_url, headers=headers, verify=False)

response.raise_for_status()

return response.json()

def get_status(hostname, user, password):

token_url = "https://{h}:8243/token".format(h=host)

access_token, refresh_token, scopes = get_smrtlink_auth_token(user, password,
token_url)

return _get_endpoint("/status", access_token)

 SMRT Link API use cases

9

Managing SMRT Link Cloud API tokens
SMRT Link Cloud API tokens are managed in the SMRT Link Cloud GUI. In Settings > API keys, keys
can be created and managed. When creating an API Key the name must only include alphanumeric
characters, dashes, and underscores.

At creation, the API key is displayed only once. After creation, if the key is lost or forgotten a new key
should be generated.

From API Key Management, management options include enabling/disabling a key, deleting keys,
editing keys, and regenerating keys

 SMRT Link API use cases

10

How to set up a run design

To set up a run design, perform the following steps:

1. Prepare the run design information in a CSV file, as documented in the SMRT Link user guide
at https://www.pacb.com/support/software-downloads/ . The SMRT Link distribution also
includes a ZIP file containing template CSV files.

2. Create the run design: Use the POST request with the following endpoint:

POST /smrt-link/import-run-design

The payload (request body) for this POST request is a JSON string with either one of these fields:

• path: The path to the CSV file on the local or NFS file system.

• content: The raw content of the CSV file, as a string

Example

POST /smrt-link/import-run-design
{

"path" : "/data/pacbio/run-csvs/my_run_20230201.csv"
}

This assumes that the server has read access to the specified path; if this is not possible, post the content
directly.

The response will be the JSON object translated from CSV; the uuid field can be used to retrieve the run
XML from this endpoint, which is also used by PacBio instruments:

GET /smrt-link/runs/<uuid>

For simple automation and testing, this endpoint is available on the Linux command line using the
pbservice command:

pbservice import-run /data/pacbio/run-csvs/my_run_20230201.csv

How to get recent runs
To get recent runs, perform the following steps:

1. Get the list of all runs by using the GET request with the following endpoint:

GET /smrt-link/runs

2. Filter the response based on the value of the createdAt field. For example:

"createdAt": "2016-12-13T19:11:54.086Z"

https://www.pacb.com/support/software-downloads/

 SMRT Link API use cases

11

Note: You may also search runs based on specific criteria, such as reserved state, creator, or summary
substring.

Example: Find all runs created on or after 01.01.2017

First, get the list of all runs:

GET /smrt-link/runs

The response is an array of run objects, as in the following example: (Some fields are removed for display purposes.)

[
{

"name" : "54001_SAT",
"uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
"createdAt" : "2016-11-08T17:50:57.955Z",
"summary" : "SAT run"

},
{

"name" : "54001_ecoli_15k",
"uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15",
"createdAt" : "2017-01-20T16:08:41.610Z",
"summary" : "E. coli assembly"

},
{

"name" : "54001_hla_amplicons",
"uniqueId : "5026afad-fbfa-407a-924b-f89dd019ca9f",
"createdAt" : "2017-01-21T00:21:52.534Z",
"summary" : "Human HLA"

}
]

Now, search the above response for all run objects whose createdAt field starts with the 2017-01
substring. In the above example, you will get two runs that fit your criteria (that is, created on or after
01.01.2017):

• Run with "name" equal to "54001_ecoli_15k",

• Run with "name" equal to "54001_hla_amplicons".

 SMRT Link API use cases

12

How to monitor the progress of a SMRT Link run

Run progress can be monitored by looking at the completion status of each collection associated with that
run. Perform the following steps:

1. If you do not have the Run UUID, retrieve it as described in Step 1 of How to get recent runs.

2. Once you have the Run UUID, get all collections that belong to the run. Use the Run UUID in the GET
request with the following endpoint:

GET /smrt-link/runs/{runUUID}/collections

The response contains the list of all collections of that run.

3. Monitor collection status to see when all collections are complete.

Until all collections of the run have the field status set to Complete, repeat the GET request with the
following endpoint:

GET /smrt-link/runs/{runUUID}/collections

You may also monitor each collection individually.

Use the collection UUID in the GET request with the following endpoint:

GET /smrt-link/runs/{runUUID}/collections/{collectionUUID}

4. To monitor run progress using QC metrics as well, do this at the collection level, for each
collection that belongs to this run. For instructions, see How to get QC reports for a specific
collection.

The full set of QC metrics for a collection will be available only when the collection is complete.
Monitor the completion status of each collection and, for each complete collection, check its QC
metrics. QC metrics of all collections that belong to the run will let you evaluate the overall success
of the run.

Example

To monitor the run with Name = 84001_SAT, use the following steps:

1. Get the list of all runs as described in the previous section.

GET /smrt-link/runs

The response is an array of run objects, as in the following example: (Some fields are
removed for display purposes.)
[

{
"name" : "84001_SAT",
"uniqueId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
"createdAt" : "2023-12-18T17:50:57.955Z",
"summary" : "SAT run"

},
{

"name" : "84001_ecoli_15k",

 SMRT Link API use cases

13

"uniqueId" : "798ff161-23ee-433a-bfd9-be8361b40f15",
"createdAt" : "2023-01-20T16:08:41.610Z",
"summary" : "E. coli assembly"

},
{

"name" : "84001_hla_amplicons",
"uniqueId" : "5026afad-fbfa-407a-924b-f89dd019ca9f",
"createdAt" : "2023-01-21T00:21:52.534Z",
"summary" : "Human HLA"

}
]

Search the above response for the object with the name field equal to 84001_SAT.

From the above example, you will get the run object with the uniqueId field equal to
a836efbc-fd58-40f6-b586-43c743730fe0.

2. With this Run UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all collections that
belong to this run:

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-43c743730fe0/collections

The response is an array of collection objects of this run, as in the following example:

[{

}, {

}
]

"name" : "84001_SAT_1stCell",
"instrumentName" : "Revio",
"context" : "r84001_20231219_160902",
"well" : "A01",
"status" : "Complete",
"instrumentId" : "84001",
"startedAt" : "2023-12-19T16:12:47.014Z",
"uniqueId" : "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b",
"collectionPathUri" : "/data/revio/r84001_20231219_160902/1_A01",
"runId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
"movieMinutes" : 120

"name" : "84001_SAT_2ndCell",
"instrumentName" : "Revio",
"context" : "r84001_20231219_160902",
"well" : "B01",
"status" : "Ready",
"instrumentId" : "84001",
"startedAt" : "2023-12-19T16:12:47.014Z",
"uniqueId" : "08af5ab4-7cf4-4d13-9bcb-ae977d493f04",
"collectionPathUri" : "/data/revio/r84001_20231219_160902/2_B01",
"runId" : "a836efbc-fd58-40f6-b586-43c743730fe0",
"movieMinutes" : 120

 SMRT Link API use cases

14

In the above example, the first collection has a status of Complete.

You can take its UUID, i.e. uniqueId: 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b, and get its QC
metrics. For instructions, see How to get QC reports for a specific collection.

The second collection has a status of Ready.

You can take its UUID, i.e. uniqueId: 08af5ab4-7cf4-4d13-9bcb-ae977d493f04, and
monitor its status until it becomes Complete. To do so, use the following API call:

GET /smrt-link/runs/a836efbc-fd58-40f6-b586-
43c743730fe0/collections/08af5ab4-7cf4-4d13-9bcb-ae977d493f04

Once this collection becomes complete, you can get its QC metrics as well.

How to run jobs using services
SMRT Link runs several different types of "jobs" which consist of tasks that may run for different
amounts of time to run, and are therefore executed asynchronously. To view a list of supported
job types, enter:

GET /smrt-link/job-manager/job-types

[
{
"jobTypeId": "db-backup",
"description": "Create a DB backup of the SMRT Link system",
"isQuick": true,
"isMultiJob": false

},
{
"jobTypeId": "delete-datasets",
"description": "(Soft) delete of PacBio DataSet XML",
"isQuick": true,
"isMultiJob": false

},
...

]

Note: "Quick" jobs (generally taking less than a minute) have their own queue, separate from
analysis jobs and other I/O intensive tasks.

Creating a job follows this pattern:

POST /smrt-link/job-manager/jobs/<jobTypeId>

The request body varies depending on job type, from a single path field to more complex data
types, several examples of which are described below. The server should respond with 201:
Created and the model for the new job:

{
"name": "import-dataset",
"updatedAt": "2018-06-19T21:13:31.047Z",
"workflow": "{}",
"path": "/smrtlink/userdata/jobs_root/000/000001",
"state": "CREATED",

 SMRT Link API use cases

15

"tags": "",
"uuid": "7cf74b62-c6b8-431d-b8ae-7e28cfd8343b",
"projectId": 1,
"jobTypeId": "import-dataset",
"id": 1,
"smrtLinkVersion": "6.0.0.SNAPSHOT38748",
"comment": "Description for job Import PacBio DataSet",
"createdAt": "2018-06-19T21:13:31.047Z",
"isActive": true,
"createdBy": null,
"isMultiJob": false,
"jsonSettings":

"{\"path\":\"/data/sequel/r54001_20161219_160902/1_A01/m54001_20161219_170101.

consensusreadset.xml\",\"datasetType\":\"PacBio.DataSet.ConsensusReadSet\",\"submit\":true}",

"jobUpdatedAt": "2018-06-19T21:13:31.047Z",
}

Client code should now block until the job is complete, which should result in the state field changing to
SUCCESSFUL if all goes well.

Note: Blocking mean that the client will poll for the server to complete a job. When the system is
under minimal load, blocking can be used instead of manually polling for the job to complete.
High-computational situations, such as a large FASTA file conversion, are not appropriate for
blocking.

How to import a dataset
Once a run is complete and the data sets are transferred off the instrument, the resulting Data
Set(s) are automatically imported into SMRT Link. To import a Data Set manually an import-
dataset job must be run.

To import a Data Set, use this API call:

POST /smrt-link/job-manager/jobs/import-dataset

The request body in this case is very simple:
{
"path":

"/data/revio/r84001_20231219_160902/1_A01/r84001_20231219_160902_s1.consensusreadset.xml
"
}

The server should respond with 201: Created and the model for the new job; it should only take
several minutes at most for the import job to complete.

Note that the same import-dataset job type is also used to import other Data Set types such as the
ReferenceSet XML used to run the SAT pipeline.

Searching for a Data Set
The Data Set retrieval endpoints support a number of search operators that may be included as
CGI parameters:

 SMRT Link API use cases

16

GET /smrt-link/datasets/ccsreads?name=human

String fields use case-insensitive partial matching, so this will retrieve all Data Sets whose names include
human in any combination of upper and lower case.

You can also retrieve a selection of Data Sets by posting a search query with a list of UUIDs:

POST /smrt-link/datasets/ccsreads
{
"uuid": "in:7cf74b62-c6b8-431d-b8ae-7e28cfd8343b,a836efbc-fd58-40f6-b586-

43c743730fe0"
}

Note: The list needs to start with in: to tell the search API to find values from a list.

How to capture run-level summary metrics
Run-level summary metrics are captured in the QC reports. See the following sections:

• How to get QC reports for a specific SMRT Link run.

• How to get QC reports for a specific collection.

How to get SMRT Link Data Set reports by using the UUID
To get reports for a Data Set, given the Data Set UUID, perform the following steps:

1. Determine the Data Set type from the list of available types. Use the GET request with the
following endpoint:

GET /smrt-link/dataset-types

2. Get the corresponding Data Set type string. The Data Set type is in the shortName field.

3. Get reports that correspond to the Data Set. Given the Data Set UUID and the Data Set type,
use them in the GET request with the following endpoint:

GET /smrt-link/datasets/{datasetType}/{datasetUUID}/reports

Example

To get reports associated with a ccsreads with UUID = 146338e0-7ec2-4d2d-b938-
11bce71b7ed1, perform the following steps:

Use the GET request with the following endpoint:

GET /smrt-link/dataset-types

You see that the shortName of ConsensusReadSet is ccsreads. The endpoint is:

/smrt-link/datasets/ccsreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Use the GET request with this endpoint to get reports that correspond to the

 SMRT Link API use cases

17

ConsensusReadSet with UUID = 7cf74b62-c6b8-431d-b8ae-7e28cfd8343b:

GET /smrt-link/datasets/ccsreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Once you have the UUID for an individual report, download it using the datastore files service with the uuid
field:

GET /smrt-link/datastore-files/519817b6-4bfe-4402-a54e-c16b29eb06eb/download

How to get QC metrics for a specific collection
To retrieve the run QC metrics of a completed collection, given the collection UUID, perform the
following steps:

1. Get the QC reports that correspond to this collection by using the GET request with the
following endpoint:

GET /smrt-link/runs/{runId}/collections/{collectionId}/qc

See How to get SMRT Link reports for Data Sets by using the UUID for more details.

Note: Obtaining Data Set reports based on the collection UUID as described above will only work
if the collection is complete. If the collection is not complete, then the ConsensusReadSet does
not exist yet.

How to get QC and reports for a specific SMRT Link run
QC metrics for a run are stored as individual reports associated with a run’s collection objects, and as a
collated summary of metrics as is reported on the SMRT Link ‘Runs Summary’ page.

To get the summarized QC metrics for a specific run, given the run Name, perform the following steps:

1. Get the list of all runs by using the GET request with the following endpoint:

GET /smrt-link/runs

In the response, perform a text search for the run name: Find the object whose name field is
equal to the run name, and get the Run UUID, which is found in the uniqueId field.

2. Get the QC metrics that belong to this run by using the Run UUID from the previous step in the GET
request with the following endpoint:

GET /smrt-link/runs/{runId}/qc

The response will be an array of objects corresponding to the run’s collections. Each
collection object will contain that collection’s QC metrics as individual fields.

The full QC reports can also be recovered through the dataset objects associated with a run. To get QC
reports for a specific run, given the run Name, perform the following steps:

1. Get the list of all runs by using the GET request with the following endpoint:

GET /smrt-link/runs

 SMRT Link API use cases

18

In the response, perform a text search for the run name: Find the object whose name field is
equal to the run name, and get the Run UUID, which is found in the uniqueId field.

2. Get all collections that belong to this run by using the Run UUID found in the previous step
in the GET request with the following endpoint:

GET /smrt-link/runs/{runId}/collections

3. Take a collection UUID of one of collection objects received in the previous response. The
collection UUIDs are in the uniqueId fields.

Get the collection information by using the collection UUID from the previous step with a GET request to
the following endpoint:

GET /smrt-link/runs/{runId}/collections/{collectionId}

Get the ConsensusReadSet UUID, which is found in the ccsId field

4. Make sure that the collection whose uniqueId field you take has the field status set to
Complete. This is because obtaining qc reports based on the collection UUID as described
below will only work if the collection is complete. If the collection is not complete, the
ConsensusReadSet does not exist yet.

You can now retrieve the Data Set reports that correspond to this collection as described
in How to get SMRT Link reports for Data Sets by using the UUID.

5. Repeat Step 3 to download QC reports for all complete collections of that run.

Example

You view the Runs page in SMRT Link, and open the page of a run with a status of Complete.
Take the run name and look for the Run UUID in the list of all runs, as described above.

Note: The Run ID also appears in the {runUUID} path parameter of the SMRT Link UI URL:

http://{dnsName}:9090/#/runs/{runUUID}

So the shorter way would be to take the Run UUID directly from the URL, such as

http://{dnsName}:9090/#/runs/a836efbc-fd58-40f6-b586-43c743730fe0 With this Run

UUID = a836efbc-fd58-40f6-b586-43c743730fe0, get all collections that

belong to this run: GET /smrt-link/runs/a836efbc-fd58-40f6-b586-

43c743730fe0/collections

Take a UUID of a completed collection, such as uniqueId: 59230aeb-a8e3-4b46-b1b1- 24c782c158c1.
With this collection UUID, retrieve the ConsensusReadSet UUID:

GET /smrt-link/runs/{runId}/collections/{collectionId}

Use the ConsensusReadSet ID to get QC reports of the corresponding ConsensusReadSet:

GET /smrt-link/datasets/ccsreads/7cf74b62-c6b8-431d-b8ae-7e28cfd8343b/reports

Take a UUID of some report, such as uuid: 00c310ab-e989-4978-961e-c673b9a2b027. With this

 SMRT Link API use cases

19

report UUID, download the corresponding report file:

GET /smrt-link/datastore-files/00c310ab-e989-4978-961e-c673b9a2b027/download

Repeat the last two API calls until you download all desired reports for all complete collections.

How to set up a SMRT Link analysis job for a specific workflow
To create an analysis job for a specific workflow, you need to create a job of type analysis with
the payload based on the template of the desired pipeline. Perform the following steps:

1. Get the list of all pipeline templates used for creating analysis jobs:

GET /smrt-link/resolved-pipeline-templates

2. In the response, search for the name of the specific pipeline to set up. Once the desired
template is found, note the values of the pipeline id and entryPoints elements of that
template.

3. Identify the Data Set(s) you want to use to run the analysis, and make note of the UUID(s).

4. For each entry point, find the corresponding record in the dataset-types endpoint, and extract the
shortName field:

GET /smrt-link/dataset-types

5. For each input Data Set, check whether a record already exists at the appropriate Data Set
endpoint, and if one does not, it should be imported as described above. The Data Set
endpoints take this form:

GET /smrt-link/datasets/<shortName>/UUID

6. Build the request body for creating a job of type analysis. The basic structure looks like this:

{
"entryPoints": [

{
"datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
"entryId": "eid_ccsread",
"fileTypeId": "PacBio.DataSet. ConsensusReadSet "

},
{

"datasetId": "1a369917-507e-4f70-9f38-69614ff828b6",
"entryId": "eid_ref_dataset",
"fileTypeId": "PacBio.DataSet.ReferenceSet"

}
],
"name": "Lambda SAT job",
"pipelineId": "cromwell.workflows.pb_sat",
"taskOptions": [],
"workflowOptions": []

}

Use the pipeline id found in Step 2 as the value for the pipelineId element.

Use Data Set types of the entryPoints array found in Step 1 and corresponding Data Set IDs
found in Step 2 as the values for elements of the entryPoints array.

 SMRT Link API use cases

20

The Data Set IDs may be provided either as UUIDs (which are specified by the XML file and
are independent of the server used) or integer IDs (which are generated by the server when
the Data Sets are imported). In most cases the UUIDs will be easier to work with as they are
known in advance.

Note that the taskOptions array is optional and may be completely empty in the request body.
(workflowOptions is optional, and the contents are ignored by the server.)

7. Create a job of type analysis. Use the request body built in the previous step in the
POST request with the following endpoint:

POST /smrt-link/job-manager/jobs/analysis

8. You may monitor the state of the job created in Step 6 with the following request:

GET /smrt-link/job-manager/jobs/analysis/{jobID}/events

where jobID is equal to the value received in the id element of the response in Step 6.

Example

Suppose you want to set up an analysis job for the SAT pipeline.

First, get the list of all pipeline templates used for creating analysis jobs:

GET /smrt-link/resolved-pipeline-templates

The response is an array of pipeline template objects. In this response, do the search for the entry with
name : Site Acceptance Test (SAT). The entry may look as in the following example: (Task options were
truncated for clarity.). Please note the SAT analysis uses a tiny SubreadSet Data Set and not a
ConsensusReadSet Data Set.

{

"name": "Site Acceptance Test (SAT)",
"id" : "cromwell.workflows.pb_sat",
"description": "Site Acceptance Test - lambda genome resequencing used

to validate new\n PacBio installations",
"version" : "0.1.0",
"entryPoints": [

{
"entryId": "eid_ref_dataset",
"fileTypeId": "PacBio.DataSet.ReferenceSet",
"name": "Entry Name: PacBio.DataSet.ReferenceSet"

},
{

"entryId": "eid_subread",
"fileTypeId": "PacBio.DataSet. SubreadSet ",
"name": "Entry Name: PacBio.DataSet. SubreadSet "

}
],
"tags" : ["consensus", "mapping", "reports", "sat"],
"taskOptions" : [{

{
"default": "",
"description": "Dataset filter string",
"id": "dataset_filters",
"name": "Filters to add to the DataSet",

 SMRT Link API use cases

21

"optionTypeId": "string"
},
{

"default": 0,
"description": "Downsampling Factor",
"id": "downsample_factor",
"name": "Downsampling Factor",
"optionTypeId": "integer"

}
] }

In the above entry, take the value of the pipeline id:cromwell.workflows. Also take the Data

Set types of entryPoints elements: fileTypeId:PacBio.DataSet.SubreadSet and

fileTypeId:PacBio.DataSet.ReferenceSet. In this example we use the lambdaNEB reference

and example PacBio data that are distributed with SMRT Link. First check whether they have been

imported already:

GET /smrt-link/datasets/subreads/5bd43ef4-6afe-dc62-4f49-03b75a051801

{
"name": "lambda/0007_tiny",
"updatedAt": "2015-10-26T22:54:46.000Z",
"path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub

/current/private/pacbio/canneddata/lambdaTINY/m150404_101626_42267_c1008079208
00000001823174110291514_s1_p0.subreadset.xml",

"instrumentControlVersion": "2.3.0.1.142990",
"tags": "",
"instrumentName": "42267",
"uuid": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
"totalLength": 16865720,
"projectId": 1,
"numRecords": 19930,
"wellSampleName": "Inst42267-040315-SAT-100pM-2kb-P6C4",
"bioSampleName": "unknown",
"version": "3.0.1",
"cellId": "unknown",
"id": 5,
"md5": "288d3bdadf83bda41dd7fefc11cad128",
"importedAt": "2018-07-06T00:45:10.753Z",
"jobId": 3,
"createdAt": "2015-10-26T22:54:46.000Z",
"isActive": true,
"createdBy": "smrtlinktest",

"wellName": "A01",
"cellIndex": 4,
"metadataContextId":

"m150404_101626_42267_c100807920800000001823174110291514_s1_p0",

"numChildren": 0,
"runName": "lambdaTINY",
"datasetType": "PacBio.DataSet.SubreadSet",
"comments": "Inst42267-SAT-100pM-2kbLambda-P6C4-Std120_CPS_040315"

}
GET /smrt-link/datasets/references/1a369917-507e-4f70-9f38-69614ff828b6

 SMRT Link API use cases

22

{
"name": "lambdaNEB",
"updatedAt": "2015-10-24T03:32:50.530Z",
"path": "opt/smrtlink-release_6.0.0.40259/admin/bin/../../bundles/smrtinub

/current/private/pacbio/canneddata/referenceset/lambdaNEB/referenceset.xml",
"ploidy": "haploid",
"tags": "",
"uuid": "1a369917-507e-4f70-9f38-69614ff828b6",
"totalLength": 48502,
"projectId": 1,
"numRecords": 1,
"version": "3.0.1",
"id": 4,
"md5": "4861bca63e02aa26c92724febb3299c2",
"importedAt": "2018-07-06T00:45:10.660Z",
"jobId": 5,
"createdAt": "2015-10-24T03:32:50.530Z",
"isActive": true,
"createdBy": "smrtlinktest",
"organism": "lambdaNEB",
"numChildren": 0,
"datasetType": "PacBio.DataSet.ReferenceSet",
"comments": "reference dataset comments"

}

Build the request body for creating an analysis job for the SAT pipeline. Use the pipeline id
obtained above as the value for the pipelineId element. Use the two Data Set UUIDs as values
of the datasetId fields in the entryPoints array. For example:

{

"pipelineId" : "cromwell.workflows.pb_sat",
"entryPoints" : [

{
"datasetId": "5bd43ef4-6afe-dc62-4f49-03b75a051801",
"entryId": "eid_subread",
"fileTypeId": "PacBio.DataSet.SubreadSet"

},
{

"datasetId": "1a369917-507e-4f70-9f38-69614ff828b6",
"entryId": "eid_ref_dataset",
"fileTypeId": "PacBio.DataSet.ReferenceSet"

}
],
"taskOptions" : [],
"workflowOptions": [],
"name": "My SAT Job"

}

Now create a job of type analysis. Use the request body built above in the following API call:

POST /smrt-link/job-manager/jobs/analysis

Verify that the job was created successfully. The return HTTP status should be 201 Created.

How to query job history
The Job Service endpoints provide a number of search criteria (plus paging support) that can be

 SMRT Link API use cases

23

used to limit the return results. A full list of available search criteria is provided in the the JSON
Swagger API definition for the jobs endpoint. The following search retrieves all failed Site
Acceptance Test (SAT) pipeline jobs:

GET /smrt-link/job-manager/jobs/analysis?state=FAILED&subJobTypeId=cromwell

For most data types, additional operators besides equality are allowed. For example:

GET /smrt-link/job-manager/jobs/analysis?createdAt=lt%3A2019-03-
01T00:00:00.000Z&createdBy=myusername

This retrieves all analysis jobs run before 2019-03-01 by a user with the login ID myusername.

Note: Certain searches, especially partial text searches using like:, may be significantly slower to
execute and can overload the server if performed too frequently.

You can also perform bulk retrieval of jobs using the search endpoint:

POST /smrt-link/job-manager/jobs/analysis/search
{
"id": "in:1,2,3,4"

}

The example above will retrieve jobs 1-4. You may also query on UUID or any other supported
search field.

 SMRT Link API use cases

24

How to copy and rerun a SMRT Link analysis
The options endpoint for a specific job provides the POST content that ran it:

GET /smrt-link/job-manager/jobs/analysis/<jobId>/options

As is the case for Data Set IDs, either the UUID or the integer ID of the job can be provided. In this case, as
both are generated automatically at job creation time, there is no preference for one or the other.

For example:

GET /smrt-link/job-manager/jobs/analysis/3/options

{
"name": "sat_lambda",
"entryPoints": [
{
"entryId": "eid_ccsread",
"fileTypeId":
"PacBio.DataSet.ConsensusReadSet",
"datasetId": 1

},
{
"entryId": "eid_ref_dataset",
"fileTypeId": "PacBio.DataSet.ReferenceSet",
"datasetId": 2

}
],
"workflowOptions": [],
"taskOptions": [],

"pipelineId": "cromwell.workflows.pb_sat"
}

This data model can be directly POSTed to the analysis job endpoint as described above. Note
that in this case, the datasetId fields are the integer IDs generated by the SMRT Link database
backend. You can retrieve the full Data Set records (including their UUIDs) by using the same
Data Set endpoints described previously, only with the integer IDs instead of UUIDs:
GET /smrt-link/datasets/ccsreads/1

 GET /smrt-link/datasets/references/2

How to run an analysis on all collections in a run
As explained earlier, each collection corresponds to a ConsensusReadSet Data Set. To run an
analysis on multiple ConsensusReadSet combined, you can either first run a merge job to
generate a single input, or let the analysis job perform the merge automatically.

For the two-step approach, perform the following steps:

1. As described previously, collect the UUIDs for the collections in the Run you want to analyze.

2. Check each collection UUID to make sure the ConsensusReadSet XML has already been
imported, and if not, import it as described above:

GET /smrt-link/datasets/ccsreads/<UUID>

 SMRT Link API use cases

25

3. Build a payload using the following model:

{
"datasetType": "PacBio.DataSet.
ConsensusReadSet ", "ids": ["<UUID1>",
"<UUID2>", ...],
"name": "Merge run <runId> collections"

}

4. Create a merge-datasets job with the request body from Step 3:

POST /smrt-link/job-manager/jobs/merge-datasets

5. Block until this job completes successfully, then retrieve the list of job datastore files. One of these
should be the merged Data Set.

GET /smrt-link/job-manager/jobs/merge-datasets/<ID>/datastore

[
{
"modifiedAt": "2018-07-12T21:38:34.815Z",
"name": "Auto-merged hdfccsreads @ 1531431514119",
"fileTypeId": "PacBio.DataSet. ConsensusReadSet",
"path":

"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/merged.dataset.xml",
"description": "Merged PacBio DataSet from 4 files",
"uuid": "f54694da-5985-42b9-9a9e-f2190bd3b4a4",
"fileSize": 33495,
"importedAt": "2018-07-12T21:38:35.085Z",
"jobId": 4,
"createdAt": "2018-07-12T21:38:34.815Z",
"isActive": true,
"jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b",
"sourceId": "pbscala::merge_dataset"

},
{
"modifiedAt": "2018-07-12T21:38:34.264Z",
"name": "SMRT Link Job Log",
"fileTypeId": "PacBio.FileTypes.log",
"path":

"/opt/smrtlink_5.1.0.14963/userdata/jobs_root/008/008767/pbscala-job.stdout",
"description": "SMRT Link Job Log",
"uuid": "b19fbfc6-0808-40fc-917b-092f369180cd",
"fileSize": 388,
"importedAt": "2018-07-12T21:38:34.266Z",
"jobId": 8767,

"createdAt": "2018-07-12T21:38:34.264Z",
"isActive": true,
"jobUUID": "127619b4-f615-4c3f-b208-e1bf52bfe21b",
"sourceId": "analysis::master.log"

}
]

6. You may now follow the steps for running an analysis job, using the new merged ConsensusReadSet as
input.

 SMRT Link API use cases

26

To use the auto-merge capability, just submit the analysis job options with a separate eid_ccsread
entry point for each input Data Set, for example:

GET /smrt-link/job-manager/jobs/analysis/3/options
{
"name": "sat_lambda",
"entryPoints": [
{
"entryId": "eid_ccsread",
"fileTypeId": "PacBio.DataSet.
ConsensusReadSet", "datasetId": "<UUID1>"

},
{
"entryId": "eid_ccsread",
"fileTypeId": "PacBio.DataSet.
ConsensusReadSet", "datasetId": "<UUID2>"

},
{
"entryId": "eid_ref_dataset",
"fileTypeId": "PacBio.DataSet.ReferenceSet",
"datasetId": "<REF_UUID>"

}
],
"workflowOptions": [],
"taskOptions": [],
"pipelineId": "cromwell.workflows.pb_sat"

}

Note that this process is opaque to Cromwell, which does not itself accept multiple inputs with the
same identifier.

How to delete a SMRT Link job
To delete a job, you need to create another job of type delete-job, and pass the UUID of the job to
delete in the payload (the request body).

Perform the following steps:

1. Build the payload for the POST request as a JSON with the following fields:

• jobId: The UUID of the job to be deleted.

• removeFiles: A boolean flag specifying whether to remove files associated with the
job being deleted.

• dryRun: A boolean flag to check whether it is safe to delete the job prior to actually deleting it.

Note: To make sure that it is safe to delete the job (that is, there is no other piece of data
dependent on the job being deleted), then first set the dryRun field to true and perform the
API call described in Step 2 below. If the call succeeds, meaning that the job can be safely
deleted, set the dryRun field to false and repeat the same API call again, as described in Step
3 below.

2. Check whether the job can be deleted, without actually changing anything in the database

or on disk. Create a job of type delete-job with the payload which has dryRun = true; use the

 SMRT Link API use cases

27

POST request with the following endpoint:

POST /smrt-link/job-manager/jobs/delete-job

3. If the previous API call succeeded, that is, the job may be safely deleted, then proceed
with actually deleting the job.

Create a job of type delete-job with the payload which has dryRun = false; use the POST
request with the following endpoint:

POST /smrt-link/job-manager/jobs/delete-job

Suppose you want to delete the job with UUID = 13957a79-1bbb-44ea-83f3-6c0595bf0d42.
Define the payload as in the following example, and set the dryRun field to true:

{

"jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
"removeFiles" :true,
"dryRun" : true

}

Create a job of type delete-job, using the above payload in the following POST request:

POST /smrt-link/job-manager/jobs/delete-job

Verify that the response status is 201: Created.

Also notice that the response body contains JSON corresponding to the job to be deleted, as in
the following example:

{

"name" : "Job merge-datasets",
"uuid" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
"jobTypeId" : "merge-datasets",
"id" : 53,
"createdAt" : "2016-01-29T00:09:58.462Z",

...
"comment" : "Merging Datasets MergeDataSetOptions(PacBio.DataSet.

ConsensusReadSet, Auto-merged ccsreads @1454026198403)"
}

Define the payload as in the following example, and this time set the dryRun field to false, to
actually delete the job:

{

"jobId" : "13957a79-1bbb-44ea-83f3-6c0595bf0d42",
"removeFiles" : true,
"dryRun" : false

}

Create a job of type delete-job, using the above payload in the following POST request:

POST /smrt-link/job-manager/jobs/delete-job

Verify that the response status is 201: Created. Notice that this time the response body contains
JSON corresponding to the job of type delete-job, as in the following example:

 SMRT Link API use cases

28

{

"name" : "Job delete-job",
"uuid" : "1f60c976-e426-43b5-8ced-f8139de6ceff",
"jobTypeId" : "delete-job",
"id" : 7666,
"createdAt" : "2017-03-09T11:51:38.828-08:00",
...
"comment" : "Deleting job 13957a79-1bbb-44ea-83f3-6c0595bf0d42"

}

Clients should then block until the job is complete.

How to create and manipulate a Project
By default, all Data Sets and analyses are part of a "General Project" with global permissions.
Creating new projects lets you organize related Data Sets and jobs and optionally restrict access
to specific users using the SMRT Link UI. (Note: This is only enforced in the UI itself; the REST
services do not currently restrict users to specific projects.)

The Projects service requires user credentials, which typically means going through the API
gateway as described in How the authentication API works. Following is an example of how to
create a project that contains two Data Sets and includes three users with varying levels of
access:

POST /SMRTLink/1.0.0/smrt-link/projects
{

"name": "Human Structural Variation",
"description": "Human SV datasets and analyses",
"state": "CREATED",
"datasets": [

{"id": 34},
{"id": 45}

],
"members": [

{"login": "user1", "role": "OWNER"},
{"login": "user2", "role": "CAN_EDIT"},
{"login": "collaborator1", "role": "CAN_VIEW"}

],
}

The server will return the newly-created project including the integer ID that should be used in
subsequent requests:

{

"id": 2,
"name": "Human Structural Variation",
"description": "Human SV datasets and analyses",
"state": "CREATED",
"createdAt": "2020-06-01T11:51:38.828-08:00",
"updatedAt": "2020-06-01T11:51:38.828-08:00",
"isActive": true,
"grantRoleToAll": null,
"datasets": [

{"id": 34},
{"id": 45}

 SMRT Link API use cases

29

],
"members": [

{"login": "user1", "role": "OWNER"},
{"login": "user2", "role": "CAN_EDIT"},
{"login": "collaborator1", "role": "CAN_VIEW"}

]
}

If you do not want to manage user permissions individually, the field grantRoleToAll
grants global access to the project if non-null.

You can retrieve details for a specific project by appending the integer ID to the URL, thus:

GET /SMRTLink/1.0.0/smrt-link/projects/2
{

"id": 2,
"name": "Human Structural Variation",
...

}
To update project details, send a PUT request to this same URL with the modified version of
the data model used to create the project. Use DELETE to soft-delete the project and
reassign all of its Data Sets and jobs to the “General Project”.

Once you have a project ready to work with, any new job can be added to that project by
overriding the projectId field to the job data model (the default is 1, the "General Project").
You may also add a projectId query argument when retrieving lists of jobs or Data Sets to
filter the list to members of the specified project.

How to retrieve mapping report metrics from an analysis job
The jobs API provides an endpoint to retrieve report files:

GET /smrt-link/job-manager/jobs/analysis/1001/reports

[
{
"dataStoreFile": {
"modifiedAt": "2020-12-07T10:14:03.121Z",
"name": "Report mapping_stats_ccs",
"fileTypeId": "PacBio.FileTypes.JsonReport",
"path": "/data/smrtlink/jobs-root/cromwell-

executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call-
mapping_stats/execution/mapping_stats.report.json",

"description": "PacBio Report mapping_stats_ccs (a7d394be-9a9a-457a-
b0ad-5d41a21a460b)",

"uuid": "a7d394be-9a9a-457a-b0ad-5d41a21a460b",
"fileSize": 7459,
"importedAt": "2020-12-07T10:14:46.635Z",
"createdAt": "2020-12-07T10:14:03.121Z",
"isActive": true,
"sourceId": "pb_align_ccs.report_mapping_stats"

},
"reportTypeId": "pb_align_ccs.report_mapping_stats"

 SMRT Link API use cases

30

},
{
"dataStoreFile": {
"modifiedAt": "2020-12-07T10:14:12.639Z",
"name": "Report coverage",
"fileTypeId": "PacBio.FileTypes.JsonReport",
"path": "/data/smrtlink/jobs-root/cromwell-

executions/pb_align_ccs/00eae20b-f029-4a64-b882-8d95038ee89e/call-
ccs_mapping/mapping/fc30ff7d-de59-49d9-800d-dd25bf749704/call-

coverage_reports/coverage_reports/408518ac-80e5-4f48-9185-ed1b51fe43c6/call-
pbreports_coverage/execution/coverage.report.json",

"description": "PacBio Report coverage (52adc5b2-b1b9-4e27-9ae4-
94de2a525b1e)",

"uuid": "52adc5b2-b1b9-4e27-9ae4-94de2a525b1e",

"fileSize": 2596,
"importedAt": "2020-12-07T10:14:46.635Z",
"createdAt": "2020-12-07T10:14:12.639Z",
"isActive": true,
"sourceId": "pb_align_ccs.report_coverage"

},
"reportTypeId": "pb_align_ccs.report_coverage"

}
]

For workflows that produce a mapping report, it will typically have a reportTypeId of the form
workflow_id.report_mapping_stats, in this case pb_align_ccs.report_mapping_stats.
We can then retrieve the full report by adding the UUID to the URL:

GET /smrt-link/job-manager/jobs/analysis/1001/reports/a7d394be-9a9a-457a-

b0ad-5d41a21a460b

{
"version": "1.0.1",
"id": "mapping_stats_ccs",
"_comment": "Generated with pbcommand version at 2020-12-

07T02:14:03.119926",
"title": "Report mapping_stats_ccs",
"attributes": [
{
"id": "mapping_stats_ccs.blast_identity",
"name": "Mean Concordance (mapped)",
"value": 0.8919674526217451

},
...

]
}

Mean Concordance (mapped) in the SMRT Link UI is blast_identity (after converting to a
percentage value). This Python snippet shows an alternative approach to retrieving several
metrics like this from the report JSON file, bypassing the final API call:

.. code-block:: python

import os.path
from pbcommand.pb_io import load_report_from_json

 SMRT Link API use cases

31

def get_mapping_metrics(report_file):
report = load_report_from_json(report_file)
keys = {"blast_identity", "mapped_reads_n", "mapped_readlength_mean"}
return {a.id:a.value for a in report.attributes if a.id in keys}

