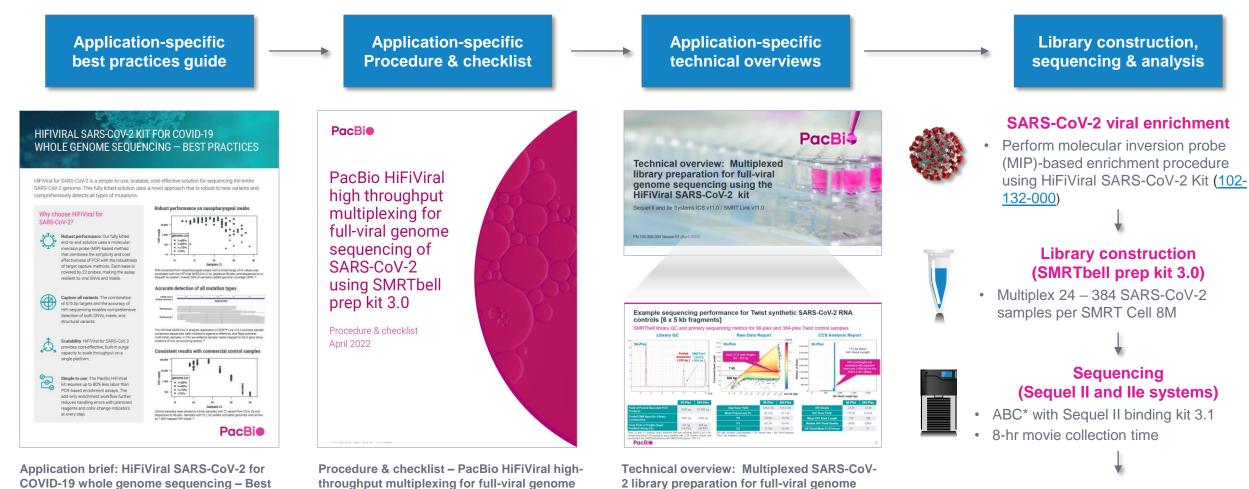
PacBi

Technical overview: Multiplexed SARS-CoV-2 library preparation for full-viral genome sequencing using SMRTbell prep kit 3.0

Sequel II and IIe systems ICS v11.0 / SMRT Link v11.0

PN 102-399-300 Version 01 (April 2022)


Multiplexed SARS-CoV-2 library preparation for full-viral genome sequencing using SMRTbell prep 3.0

Technical overview

- 1. HiFiViral SARS-CoV-2 kit workflow overview
- 2. Multiplexed library preparation using molecular inversion probe-based enrichment with the HiFiViral SARS-CoV-2 kit
- 3. Multiplexed SARS-CoV-2 library sequencing workflow recommendations
- 4. Multiplexed SARS-CoV-2 data analysis recommendations
- 5. Multiplexed SARS-CoV-2 library example performance data
- 6. Technical documentation & applications support resources
- 7. APPENDIX 1: RNA isolation kit options for full-viral genome sequencing of SARS-CoV-2

8. APPENDIX 2: Guidance on workflow automation for multiplexed library SARS-CoV-2 library preparation

SARS-CoV-2 full-viral genome sequencing: How to get started

399-300)

sequencing using SMRTbell prep 3.0 (102-

sample preparation details for constructing HiFi

Technical overview presentations describe

libraries for specific applications. Example

sequencing performance data for a given

application are also summarized.

COVID-19 whole genome sequencing – Best practices (<u>102-193-692</u>)

PacBi

Summary overview of application-specific sample preparation and data analysis workflow recommendations

ABC = Anneal primer / Bind polymerase / Clean up bound complex

details

prep kit 3.0 (102-396-100)

sequencing of SARS-CoV-2 using SMRTbell

Technical documentation containing sample library

construction and sequencing preparation protocol

Data analysis

(SMRT Link)

Perform variant calling using SMRT

Link HiFiViral SARS-CoV-2 analysis

application

HiFiViral SARS-CoV-2 kit uses molecular inversion probes for efficient enrichment of viral RNA sequences for analysis

SARS-CoV-2 enrichment

ا ر د ا ر د ا ر د ا ر د ر د ر

ר כן כו א 권 РАСВЮ

REF 100-100 Q 04/22/2024 LOT 321023 QTY: 4

 ک

Better Performance with Molecular Inversion Probes (MIPs)

- Differentiated enrichment technology
- Robust genome coverage across a range of Ct-values
- Probe design resilient to novel variants
- Capture mutations of all types
- Detect multiple strains in one sample

Easier Workflow and Faster Turnaround Times

- Easier workflow compared to targeted PCR amplicons
- All ready-to-use reagents in one kit
- Color change indicator confirms correct reagent was added
- Addition-only workflow can be automated
- Automated sequencing and analysis runs overnight

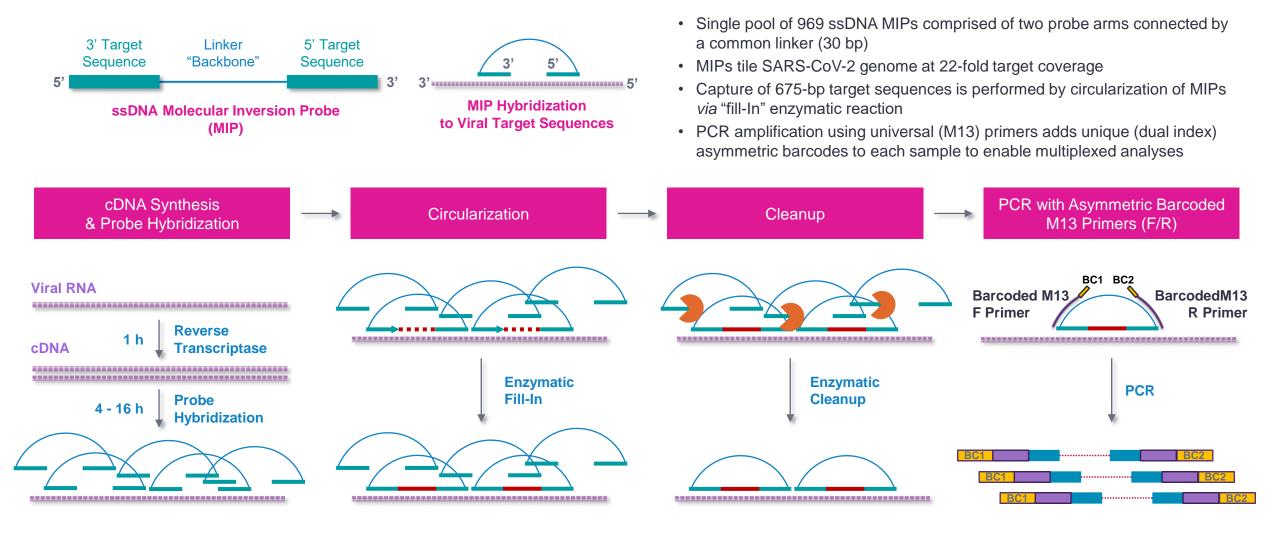
Flexible Scaling

- 384 reactions per kit
- Scalable batching: 24 384 samples per run

Quickly and efficiently scale genomic surveillance by sequencing with an accurate and robust kit solution to capture all variants

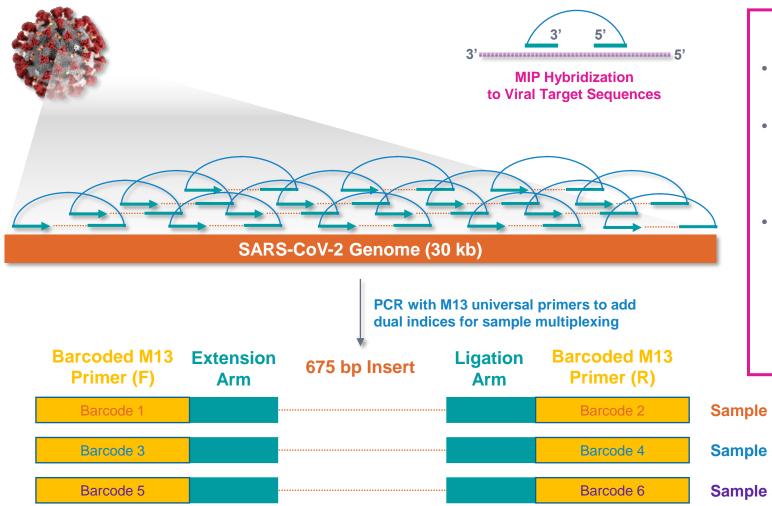
SEQUEL //e

Flexible batch siz


Costeffectiv

End-to-end PacBio protocol for full-viral Extracted viral RNA samples genome sequencing using the HiFiViral SARS-CoV-2 kit cDNA synthesis 4 – 16 h HiFiViral SARS-CoV-2 kit (102-132-000) & probe hybridization **PacBi** For targeted enrichment and barcoding Of SARS-CoV-2 PCR-positive samples* Circularization (Fill-in) & cleanup PacBio HiFiViral high throughput multiplexing for HIFIVIRAL SARS-COV-2 ASSAY KIT full-viral genome PCR with barcoded M13 LOT 000000 \$ -15 to -25 to 500.24 4 – 5 h sequencing of primers SARS-CoV-2 using SMRTbell prep kit 3.0 Pool barcoded samples Procedure & checklist Robust performance April 2022 Easier workflow **Gapture all variants** SMRTbell library construction & 6 h Flexible batch size sequencing preparation Cost effect PacBio Documentation (102-396-100) SMRT sequencing (Sequel II or IIe system) Full workflow can be completed from sample to answer in as short as ٠ 14 – 16 h** ~28 – 42 h (1 – 2.5 h hands-on time) Multiplex 24 – 384 samples per SMRT Cell 8M and load up to 8 SMRT • HiFiViral SARS-CoV-2 data Cells per Sequel IIe System to run up to 3,072 samples per week analysis in SMRT Link

* HiFiViral SARS-CoV-2 kit demonstrated use cases include RNA-extracted samples such as nasopharyngeal swabs from human SARS-CoV-2 PCR+ cohort samples. Note: The HiFiViral SARS-CoV-2 workflow is not recommended for analysis of wastewater samples.


HiFiViral SARS-CoV-2 kit uses molecular inversion probe technology for efficient viral genome enrichment

Overview of MIP-based viral enrichment enzymatic reaction steps

HiFiViral SARS-CoV-2 kit uses molecular inversion probe technology for efficient viral genome enrichment (cont.)

Dense MIP-based tiling of target sequences enables robust coverage

PacBi

* Not to scale.

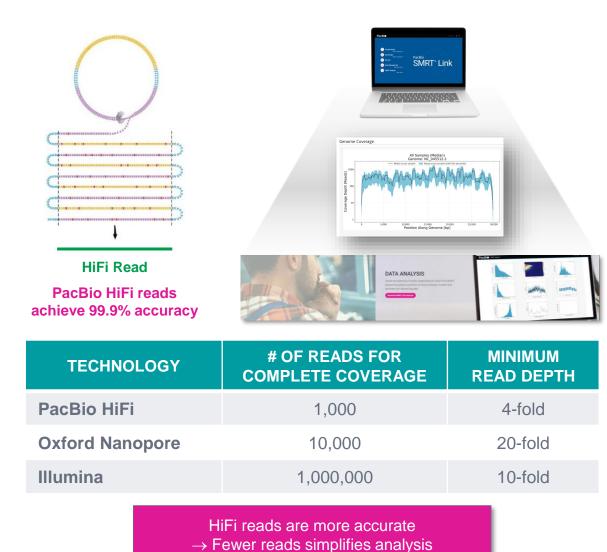
Advantages of MIPs

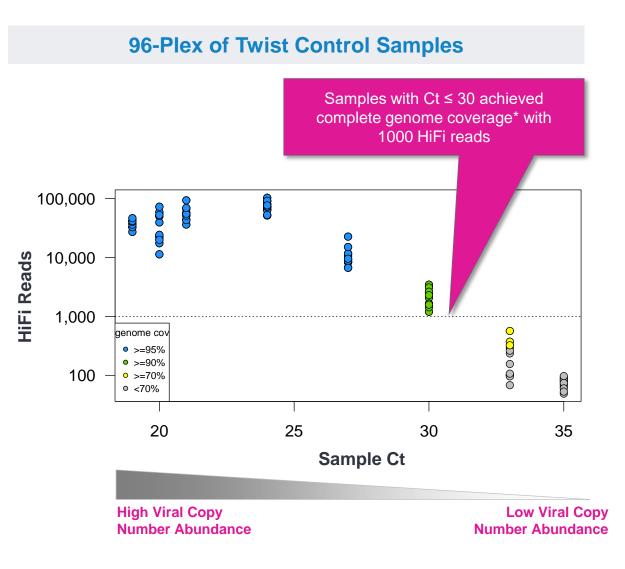
- **Higher specificity**
 - Each MIP molecule contains two probe arms •

Easier workflow

Unlike traditional PCR-based targeting with overlapping • primers, overlapping MIPs can be used in a single reaction leading to fewer plates and fewer touch points

More robust probe design


- ~1000 ssDNA probes tile target SARS-CoV-2 genome at 22-fold coverage
- More tolerant to viral RNA sample degradation and a • wider range of input RNA quantities
- Resilient to mutation-induced probe dropouts with new • viral genomic variants


Barcode 2	Sample 1 (bc1001 – – bc1002)	
Barcode 4	Sample 2 (bc1003 – – bc1004)	(
Barcode 6	Sample 3 (bc1005 – – bc1006)	1

Asymmetrically barcoded double-stranded library molecules (~800 bp)*

7

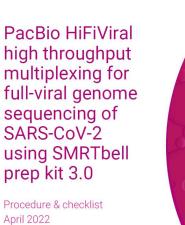
HiFiViral SARS-CoV-2 sequencing requires fewer reads for complete viral genome coverage

* Complete = ≥90% genome coverage

HiFiViral SARS-CoV-2 kit workflow overview

HiFiViral SARS-CoV-2 sample preparation procedure description

Procedure & checklist – PacBio HiFiViral high-throughput multiplexing for full-viral genome sequencing of SARS-CoV-2 using SMRTbell prep kit 3.0 (102-396-100) describes a viral enrichment and library preparation procedure for whole viral genome sequencing of multiplexed SARS-CoV-2 samples on the Sequel II and IIe systems using the HiFiViral SARS-CoV-2 kit (102-132-000) and SMRTbell prep kit 3.0 (102 - 182 - 700)


HiFiViral SARS-CoV-2 kit (102 - 132 - 000)

SMRTbell prep kit 3.0 (102 - 182 - 700)

Procedure highlights

- This procedure utilizes molecular inversion probe (MIP)-based chemistry to enrich the SARS-CoV-2 genome with tiled probes that create highly-redundant overlapping amplicons, which are barcoded and pooled for construction into a single SMRTbell library for sequencing
- Viral enrichment uses an addition-only 4-step workflow with color-coded master mixes to simplify setup
- End-to-end workflow from cDNA synthesis through to SMRTbell library construction, sequencing & analysis can be completed in as short as 28 - 42 hours depending on desired hybridization time

April 2022

PacBi

RESEARCH FOCUS PUBLIC HEALTH + SURVEILLANCE HiFiViral COVID-19 Surveillance

PacBio Documentation (102-396-100)

HiFiViral SARS-CoV-2 kit product description

HiFiViral SARS-CoV-2 Kit (102-132-000)

- Assay kit designed for targeted enrichment and barcoding of up to 384 human SARS-CoV-2-positive samples for full-length viral genomic sequencing on PacBio Sequel II or IIe systems
- Kit contains two components: 1) SARS-CoV-2 enrichment kit; and 2) Barcoded M13 primer plate

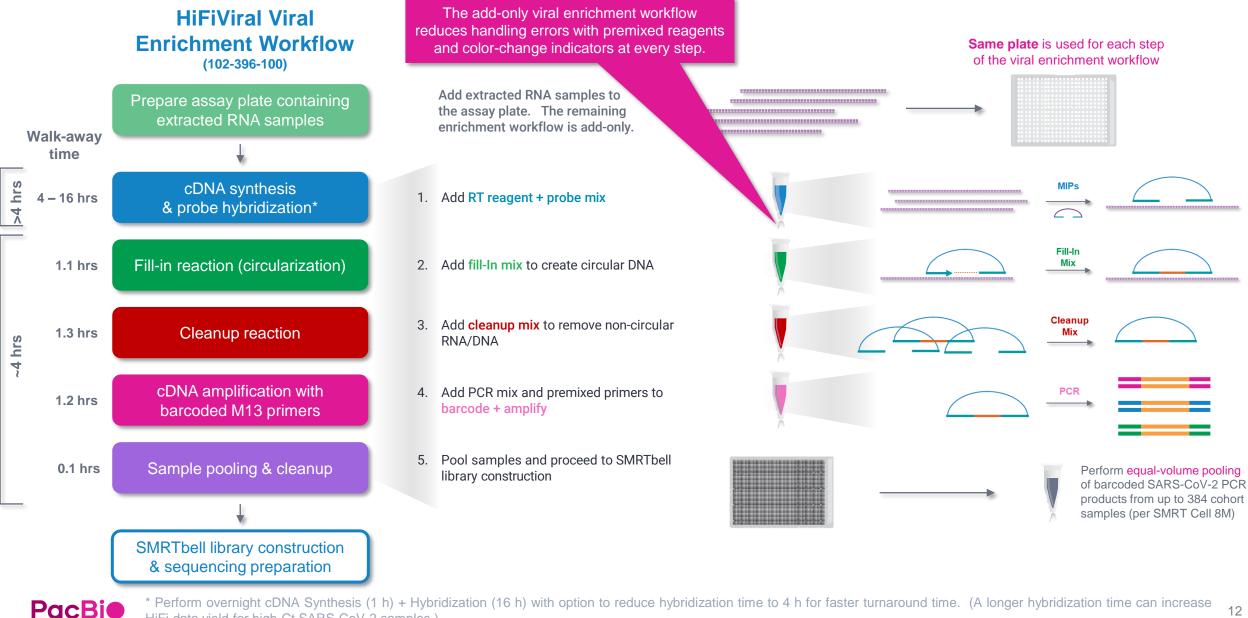
1. SARS-CoV-2 Enrichment Kit

- The SARS-CoV-2 Enrichment Kit contains all reagents for enrichment using Molecular Inversion Probes (MIPs) of extracted RNA virus from cohort samples infected with the SARS-CoV-2 virus. This kit is to be used in conjunction with the Barcoded M13 Primer Plate.
- The results of the kit are enriched DNA fragments of ~800 bp in length that can be used to prepare a SMRTbell library for sequencing.
- Reagent quantities support preparation of 384 samples with flexible scaling down to batches of 24 samples.

2. Barcoded M13 Primer Plate (102-135-500)*

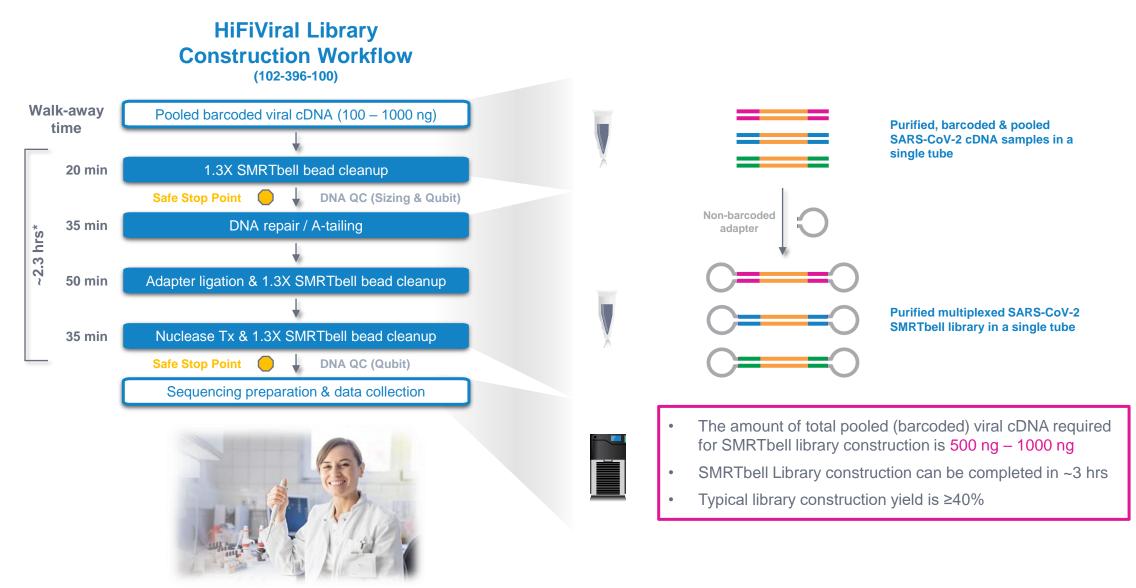
- 1 premixed primer plate containing 384 barcoded M13 primer pairs for asymmetric (dual index) barcoding of multiplexed SMRTbell libraries
- Single-use per well with pierceable foil (can reseal between sample batches)

HiFiViral SARS-CoV-2 Kit (102-132-000)



SARS-CoV-2 Enrichment Kit

Barcoded M13 Primer Plate


HiFiViral SARS-CoV-2 viral enrichment workflow overview

HiFi data yield for high-Ct SARS-CoV-2 samples.)

12

HiFiViral SARS-CoV-2 SMRTbell library construction workflow overview

Multiplexed library preparation using molecular inversion probe-based enrichment with the HiFiViral SARS-CoV-2 kit

Procedure & checklist – PacBio HiFiViral high-throughput multiplexing for full-viral genome sequencing of SARS-CoV-2 using SMRTbell prep kit 3.0

Procedure & checklist <u>102-396-100</u> describes a viral enrichment and library preparation procedure for whole viral genome sequencing of multiplexed SARS-CoV-2 samples on the Sequel II and IIe systems using the HiFiViral SARS-CoV-2 Kit (102-132-000) and SMRTbell prep kit 3.0 (SPK 3.0) (102-182-700)

HiFiViral SARS-CoV-2 Kit (102-132-000)

SMRTbell prep kit 3.0 (102-182-700)

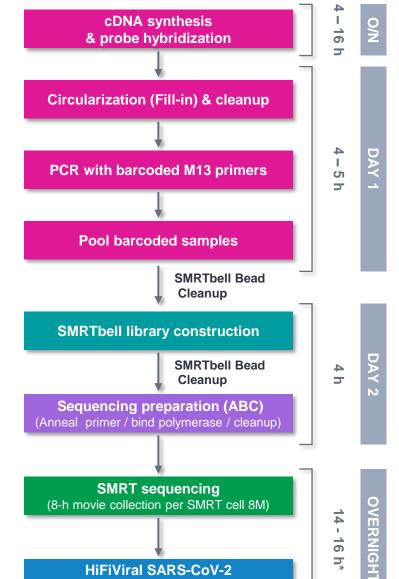
Procedure & checklist contents

- 1. Input viral RNA QC requirements and general best practices recommendations for preparing master mixes, handling RNA samples, and sealing reaction plates.
- Instructions for performing enrichment of SARS-CoV-2 viral cDNA products using the HiFiViral SARS-CoV-2 kit (102-132-000)
- 3. Instructions for pooling amplified SARS-CoV-2 cDNA products and constructing SMRTbell libraries using SMRTbell prep kit 3.0 (102-182-700)

PacBi

PacBio HiFiViral high throughput multiplexing for full-viral genome sequencing of SARS-CoV-2 using SMRTbell prep kit 3.0

Procedure & checklist April 2022


PacBio Documentation (102-396-100)

HiFiViral SARS-CoV-2 Kit sample prep workflow timing summary

Efficient workflow with only $\sim 1 - 2.5$ hrs hands-on time enables sample to answer in $\sim 28 - 42$ hours

	Workflow step	Hands-on (min)	Walk-away (hrs)
	SARS-CoV-2 RNA enrichment (~22 h)		
	cDNA synthesis	5 – 15	1.0
	Probe hybridization with MIPs	5 – 15	4.0 - 16.0
	Circularization (fill-in reaction)	5 – 15	1.0
	Enzymatic cleanup reaction	5 – 15	1.2
	PCR with barcoded M13 primers	10 - 30	1.5
	Pooling (DNA sizing QC is optional)	5 - 10	
and the second se	1.3X SMRTbell bead cleanup + Qubit assay	5 – 10	0.3
	Total	~40 - 110	~9.0 - 21.0
	SMRTbell library construction (~2.5 h)		
40	DNA repair & a-tailing	2-4	0.6
	Adapter ligation	2-4	0.5
	1.3X SMRTbell bead cleanup	2-4	0.3
29	Nuclease treatment	2 - 4	0.3
	1.3X SMRTbell bead cleanup + qubit assay	5 - 10	0.3
	Total	~15 – 30	~2.0
	Sequencing preparation (ABC) (~1.5 h)		
	Anneal sequencing primer	2.5 - 5	0.25
	Bind polymerase	2.5 - 5	0.25
***** 1992	1.2X SMRTbell bead complex cleanup	5 - 10	0.5
6 9	Total	~10 - 20	~1.0

data analysis in SMRT link

PacBi

Barcoded M13 Primer Plate

Asymmetric barcode plate map for Barcoded M13 primer plate (102-135-500)

- Ready-to-use premixed primer plate containing 384 barcoded M13 primer pairs for asymmetric (dual index) barcoding of multiplexed SMRTbell libraries
 - Plate includes 40 different oligos (16 M13 forward primers + 24 M13 reverse primers)
- Single-use per well with pierceable foil (can reseal between sample batches)
 - Fill volume in each well = $12 \mu I$ (at $10 \mu M$ primer concentration)
- Plate Layout (Excel): Link
- Barcode Sequences (FASTA): Link

		1			2		3		4		5	6	5	7		8		ç)	1	0	1	1		12		13		14		15	1	6	1	7	18	;	19		20	J	21		22	2	23	3	24	ŧ
Α	100	2 1	050	1002	1051	100	2 105	2 1002	1053	1002	1054	1002	1055	1002	1056	1002	1057	1002	1058	1002	1059	1002	1060	1002	2 1061	1002	2 1062	2 1002	2 1063	1002	2 1064	1002	1065	1002	1066	1002	1067 1	1002 1	068 1	1002 1	1069 10	002 <mark>1</mark>	070	1002	1071	1002	1072	1002	1073
В	100	3 1	050	1003	1051	100	3 105	2 1003	1053	1003	1054	1003	1055	1003	1056	1003	1057	1003	1058	1003	1059	1003	1060	1003	3 1061	1003	3 1062	2 1003	3 1063	1003	<mark>1064 1064 1064 1064 1064 1064 1064 1064 </mark>	1003	1065	1003	1066	1003	1067 1	1003 1	068 1	1003 1	1069 10	003 1	070	1003	1071	1003	1072	1003	<mark>1073</mark>
С	100	4 1	050	1004	1051	100	4 105	2 1004	1053	1004	1054	1004	1055	1004	1056	1004	1057	1004	1058	1004	1059	1004	1060	1004	4 1061	1004	1062	2 1004	1063	1004	1064	1004	1065	1004	1066	1004	1067 1	1004 1	068 1	004 1	1069 10	<mark>)04</mark> 1	070	1004	1071	1004	1072	1004	<mark>1073</mark>
D	100	<mark>5</mark> 1	050	1005	1051	100	<mark>5</mark> 105	2 100	1053	1005	1054	1005	1055	1005	1056	1005	1057	1005	1058	1005	1059	1005	1060	1005	5 1061	1005	5 1062	2 100	5 1063	1005	1064	1005	1065	1005	1066	1005	1067 1	1005 1	<mark>068</mark> 1	1005 1	069 10	005 1	070	1005	1071	1005	1072	1005	<mark>1073</mark>
Ε	100	6 1	050	1006	1051	100	<mark>6</mark> 105	2 100	1053	1006	1054	1006	1055	1006	1056	1006	1057	1006	1058	1006	1059	1006	1060	1006	6 1061	1006	<mark>6</mark> 1062	2 1000	1063	1006	1064	1006	1065	1006	1066	1006	1067 1	1006 1	068 1	1006 1	069 10	006 1	070	1006	1071	1006	1072	1006	<mark>1073</mark>
F	100	7 1	050	1007	1051	100	7 105	2 1007	1053	1007	1054	1007	1055	1007	1056	1007	1057	1007	1058	1007	1059	1007	1060	1007	7 1061	1007	7 1062	2 1007	7 1063	1007	1064	1007	1065	1007	1066	1007	1067 1	1007 1	068 1	007 1	1069 10	<mark>)07</mark> 1	070	1007	1071	1007	1072	1007	<mark>1073</mark>
G	100	8 1	050	1008	1051	100	8 105	2 1008	1053	1008	1054	1008	1055	1008	1056	1008	1057	1008	1058	1008	1059	1008	1060	1008	<mark>B</mark> 1061	1008	<mark>3</mark> 1062	2 1008	3 1063	1008	<mark>3</mark> 1064	1008	1065	1008	1066	1008	1067 1	1008 1	068 1	008 1	069 10	008 1	070	1008	1071	1008	1072	1008	<mark>1073</mark>
н	100	9 1	050	1009	1051	100	<mark>9</mark> 105	2 1009	1053	1009	1054	1009	1055	1009	1056	1009	1057	1009	1058	1009	1059	1009	1060	1009	9 1061	1009	9 1062	2 1009	1063	1009	1064	1009	1065	1009	1066	1009	1067 1	1009 1	068 1	009 1	069 10	009 1	070	1009	1071	1009	1072	1009	<mark>1073</mark>
I	101	01	050	1010	1051	101	<mark>0</mark> 105	2 1010	1053	1010	1054	1010	1055	1010	1056	1010	1057	1010	1058	1010	1059	1010	1060	1010	0 1061	1010	1062	2 1010	1063	1010	1064	1010	1065	1010	1066	1010	1067 1	1010 1	068 1	1010 1	1069 10	010 1	070	1010	1071	1010	1072	1010	<mark>1073</mark>
J	101	1 1	050	1011	1051	101	1 105	2 101	1053	1011	1054	1011	1055	1011	1056	1011	1057	1011	1058	1011	1059	1011	1060	1011	1 1061	1011	1 1062	2 1011	1063	1011	1064	1011	1065	1011	1066	1011	1067 1	1011 1	068 1	011 1	1069 10	011 1	070	1011	1071	1011	1072	1011	<mark>1073</mark>
К	101	2 1	050	1012	1051	101	2 105	2 1012	1053	1012	1054	1012	1055	1012	1056	1012	1057	1012	1058	1012	1059	1012	1060	1012	2 1061	1012	2 1062	2 1012	2 1063	1012	2 1064	1012	1065	1012	1066	1012	1067 1	1012 1	068 1	012 1	1069 10	012 1	070	1012	1071	1012	1072	1012	<mark>1073</mark>
L	101	3 1	050	1013	1051	101	<mark>3</mark> 105	2 101:	1053	1013	1054	1013	1055	1013	1056	1013	1057	1013	1058	1013	1059	1013	1060	1013	3 1061	1013	3 1062	2 1013	3 1063	1013	<mark>3</mark> 1064	1013	1065	1013	1066	1013	1067 1	1013 1	<mark>068</mark> 1	013 1	1069 10	013 1	070	1013	1071	1013	1072	1013	<mark>1073</mark>
м	101	4 1	050	1014	1051	101	<mark>4</mark> 105	2 1014	1053	1014	1054	1014	1055	1014	1056	1014	1057	1014	1058	1014	1059	1014	1060	1014	<mark>4</mark> 1061	1014	1062	2 1014	1063	1014	1064	1014	1065	1014	1066	1014	1067 1	1014 1	<mark>068</mark> 1	1014 1	069 10	014 1	070	1014	1071	1014	1072	1014	<mark>1073</mark>
Ν	101	5 1	050	1015	1051	101	<mark>5</mark> 105	2 101	1053	1015	1054	1015	1055	1015	1056	1015	1057	1015	1058	1015	1059	1015	1060	1015	5 1061	1015	5 1062	2 101	5 1063	1015	1064	1015	1065	1015	1066	1015	1067 1	1015 1	068 1	015 1	069 10	015 1	070	1015	1071	1015	1072	1015	<mark>1073</mark>
0	101	<mark>6</mark> 1	050	1016	1051	101	<mark>6</mark> 105	2 1016	1053	1016	1054	1016	1055	1016	1056	1016	1057	1016	1058	1016	1059	1016	1060	1016	6 1061	1016	<mark>6</mark> 1062	2 1016	1063	1016	1064	1016	1065	1016	1066	1016	1067 1	1016 1	<mark>068</mark> 1	016 1	1069 10	016 1	070	1016	1071	1016	1072	1016	<mark>1073</mark>
Р	101	7 1	050	1017	1051	101	7 105	2 1017	1053	1017	1054	1017	1055	1017	1056	1017	1057	1017	1058	1017	1059	1017	1060	1017	7 1061	1017	7 1062	2 1017	1063	1017	1064	1017	1065	1017	1066	1017	1067 1	1017 1	068 1	1017 1	1069 10	017 1	070	1017	1071	1017	1072	1017	1073
	F	OR	WA	RD																																													
		Rev	vers	e																																													

RNA input requirements viral genome enrichment

- Best results will be achieved if reactions contain at least 10,000 copies of RNA.
 - Samples with higher copy numbers of RNA virus will generally produce superior results.
 - See at table at right for example viral copy number values converted from a Ct scale*
- Purified RNA should be resuspended in RNase-free water or TE with a pH no greater than 7.5.
 - Contaminants including ethanol, sodium azide, sodium acetate, and guanidine salts may affect performance.
- DNase treatment is optional but the presence of small amounts of human DNA should not affect performance.
- If RNA is quantified, a method that is specific for RNA is recommended (e.g., Qubit RNA BR Assay Kit or qRT-PCR), rather than one that will also detect DNA.
- To reduce inter-sample performance variability, all samples in a batch should be quantified using the same method and normalized to the same concentration.

Example viral copy number values shown in Table below are converted from a Ct scale *after* Han *et al.* 2021.

Sample Ct	Viral copy number*
19	6 Million
20	3 Million
21	1 Million
24	100,000
27	10,000
30	1,000
33	100
35	3

* **NOTE:** A Ct value itself **cannot** be directly interpreted as viral load without a standard curve using reference materials. [See Han M.S., et al. (2021). RT-PCR for SARS-CoV-2: quantitative versus qualitative. The Lancet Infectious Disease 21(2) p165]

Master mixes

- Prepare master mixes in a PCR workstation
 - The PCR workstation should be UV-irradiated after each setup. If unsure, UV-irradiate the workstation before setting up a master mix.
 - Do not turn on the UV light when reagents are in the workstation
- Master mixes are prepared in 0.5 mL, 1.5 mL or 2 mL microfuge tubes. Briefly vortex to mix and spin down.
- If using a multichannel pipette to transfer master mixes, pre-aliquot appropriate volumes with overage into PCR strip tubes instead of troughs (pipetting reservoirs) to help ensure accurate and efficient pipetting of solutions (i.e., minimize reagent waste so that you do not run out of reagents)
- Use special care when handling small volumes of reagents Slowly pipette small reaction volumes and viscous reagents

Samples

- RNA samples should be stored at -80°C until use and thawed on ice.
- Heavily degraded RNA or RNA samples with many freeze-thaw cycles should be avoided.
- All work surfaces and gloves should be sanitized with RNaseZap (or the equivalent) prior to setup.
- For most consistent performance, all samples included in a batch, including control samples, should be from the same sample type and extracted by the same RNA extraction procedure.
- A no-RNA control is recommended but not required.
- Upon thawing frozen samples, briefly vortex and spin down prior to use.

Reaction plates for viral genome enrichment

- Always seal plates with Microseal 'B' Film (clear adhesive).
 - Foil seals are not recommended for any step in this protocol. However, they can be used for plates that will be placed in the freezer for storage.
 - Using a roller for Microseal 'B' Film, apply firm pressure and seal over the tops of all wells. Ensure all wells, especially those along the edges of the plate, are visibly sealed.
 - Inspect the corners of the plate to confirm that the seal is in contact with the plate. If not, apply firm pressure and roll until the film is in contact with the plate.
 - Proper plate sealing is critical, especially for the overnight probe hybridization step.
- When removing plate seals, a heated plate sealer can be used if desired to briefly warm the seal and loosen the adhesive.
 - Be careful when removing plate seals to avoid cross contamination.
- Always perform a visual check of liquid volumes before and after each incubation step.
 - After centrifugation, inspect the bottom of the plate to ensure the expected volume is present in every well.
 - Centrifuge in an Eppendorf 5810 fitted with a swinging bucket plate rotor at maximum rpm for approximately 30 sec.
- Verify that the liquid solution color at each reach step is correct.

Reagent handling

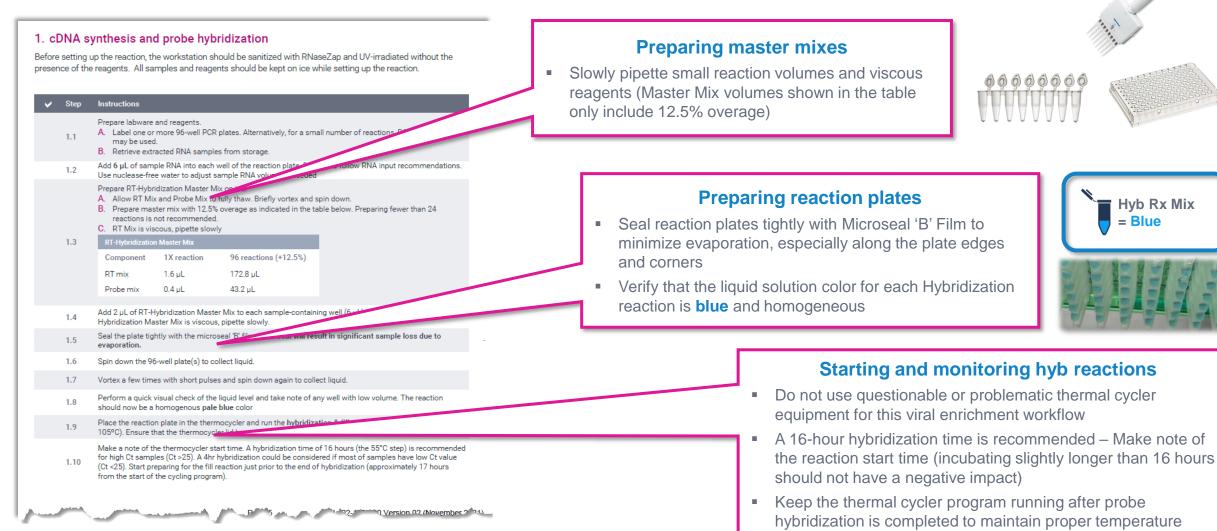
HiFiViral SARS-CoV-2 kit reagents

- Have all reagents and other required materials for each step of the MIP assay staged and ready for use to enable you to work quickly
- Set a timer during each step of the MIP assay to enable verification that reagents are added to all samples within 10 minutes
 - Correct timing is important to maximize result quality
- If performing the MIP assay for the first time, we recommend including an appropriate positive control sample in your experimental design
- Be mindful of required temperature conditions for setting up each reaction step of the MIP assay
 - cDNA synthesis and probe hybridization step:
 - RNA samples and reagents should be kept on ice while setting up the master mix and while transferring reagents and samples to the assay plate wells.
 - A cold block (e.g., Eppendorf PCR Cooler) is recommended to help keep reagents cold during reaction setup
 - Fill-in reaction step:
 - Allow the Fill-in mix to fully thaw and add to samples at room temperature (not on ice)
 - Cleanup reaction step:
 - Allow the Cleanup mix to fully thaw and add to samples at room temperature (not on ice)
 - cDNA amplification step:
 - Sample plate and reagents should be kept on ice while setting up the master mix and while transferring reagents to the assay plate wells.
 - A cold block (e.g., Eppendorf PCR Cooler) is recommended to help keep reagents cold during reaction setup
- For the Fill-in reaction and Cleanup reaction steps, do not remove the reaction plate from the thermal cycler until the reagent mix is ready.

PacBi

.

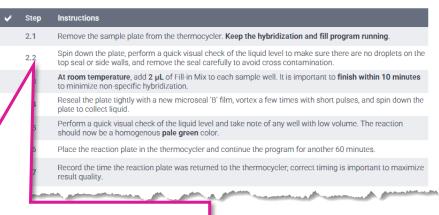
Reagent handling


SMRTbell prep kit 3.0 reagents

- Room temperature is defined as any temperature in the range of 18-23°C for this protocol.
- Thaw the repair buffer, nuclease buffer, and elution buffer at room temperature.
- Mix reagent buffers and SMRTbell adapter with a brief vortex prior to use. Enzyme mixes do not require vortexing.
- Quick spin all reagents in microcentrifuge to collect liquid at bottom prior to use.
- Keep all temperature-sensitive reagents on ice.
- Bring SMRTbell cleanup beads and Qubit 1X dsDNA HS reagents to room temperature for 30-60 minutes prior to use.
- Pipette mix all bead binding and elution steps until beads are distributed evenly in solution.
- Pipette mix all SMRTbell prep reactions by pipetting up and down 10 times.
- Samples can be stored at 4°C at all safe stopping points listed in the protocol.
- Puncture the top of the seal on the barcoded M13 primer plate with a clean, empty pipette tip before pipetting the primer mix.

Temperature-sensitive reagents							
Step used	Tube	Reagent					
Repair & A-	Blue	End repair mix					
tailing	Green	DNA repair mix					
	Orange	SMRTbell adapter					
Adapter ligation	Yellow	Ligation mix					
	Red	Ligation enhancer					
Nuclease treatment	Light green	Nuclease mix					

cDNA synthesis and probe hybridization



control of the heating block

Circularization (Fill reaction)

2. Fill reaction

Before the end of the probe hybridization reaction, allow the Fill-in mix to fully thaw. Briefly vortex and spin down. Do
not remove the reaction plate from the thermal cycler until the reagent is ready and the hybridization time is over.
 Correct timing is important to maximize result quality.

Preparing fill reaction plates

- Add reagents at room temperature, DO NOT cool on ice
- Fill Reaction steps are time sensitive – Work quickly with a multichannel pipettor to complete all liquid transfer steps within 5 minutes for best capture results
- Verify that the liquid solution color for each Fill Reaction is green and homogeneous

Cleanup reaction

3. Cleanup reaction

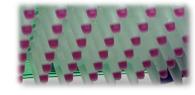
Before the end of the fill reaction, allow the cleanup mix to fully thaw. Briefly vortex and spin down. Do not remove the reaction plate from the thermal cycler until the reagent is ready. Correct timing is important to maximize result quality.

Step Instructions

3.6

3.7

The c


- 3.1 Remove the sample plate from the thermocycler.
- 3.2 Spin down the plate, perform a quick visual check of the liquid level to make sure there are no droplets on the top seal or side walls, and remove the seal carefully to avoid cross contamination.
- 3.3 At room temperature, add 2 µL of Cleanup Mix to each sample well. It is important to finish within 10 minutes to minimize non-specific hybridization.
- 3.4 Reseal the plate tightly with a new microseal 'B' film, vortex a few times with short pulses, and spin down the plate.
- 3.5 Perform a quick visual check of the liquid level and take note of any well with low volume. The reaction should now be a homogenous **red** color.
 - Place the plate in the thermocycler and run the cleanup program (set the heated lid at 105°C).
 - will take approximately 65 minutes to run; proceed immediately to the cDNA amplification step

and a second dealer of the second second

Preparing cleanup reaction plates

- Add reagents at room temperature, DO NOT cool on ice
- Cleanup Reaction steps are time sensitive Work quickly with a multichannel pipettor to complete all liquid transfer steps within 5 minutes for best capture results
- Verify that the liquid solution color for each Cleanup Reaction is red and homogeneous

PCR amplification with barcoded M13 primers

4. cDNA amplification

Before the end of the cleanup reaction, allow the PCR Mix and Barcoded M13 Primer Plate to fully thaw. Spin down the Barcoded M13 primer plate before opening. Briefly vortex the PCR Mix and spin down. The reaction plate and reagents should be kept on ice while setting up the reaction.

•	Step	Instructions
	4.1	Remove the sample plate from the thermocycle
	4.2	Spin down the plate, perform a quick visual cher top seal or side walls, and remove the seal care
	4.3	Using a multichannel pipette, add 12 μL of PCR
	4.4	Add 2.4 μ L of primer from the barcoded M13 pr top of the seal on the barcoded M13 primer plat

Add 2.4 μL of primer from the barcoded M13 primer plate to the corresponding sample wells. Puncture the top of the seal on the barcoded M13 primer plate with a clean, empty pipette tip before pipetting the primer mix.

k of the liquid level to make s

The total reaction volume in each well is approximately $24.0\ \mu L.$ See table below:

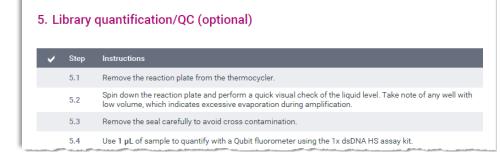
	Total Volume	24 uL
	Barcoded M13 Primer Pair	2.4 µL
6	PCR Mix	12 µL
	Cleanup reaction mix	9.6 µL*
	Component	Volume
	cDNA amplification	

 * The expected volume after the cleanup reaction is approximately 9.6 μL , considering some degree of evaporation during the prior steps

- 4.7 Reseal the plate tightly with a new microseal 'B' film, vortex a few times with short pulses, and spin down the plate.
- 4.8 Perform a quick visual check of liquid level and take note of any well with low volume. The now be a homogenous magenta color.
- 4.9 Place the PCR reactions in a thermocycler and run the cDNA 105°C).
- 4.10 After amplification, briefly spin down the plate.
- 4.11 Immediately proceed to the 'Sample pooling & cleanup' section if not performing the optional Library Quantitation/QC step. Alternatively, the reaction plate can be stored at -20°C until further processing.

SAFE STOPPING POINT

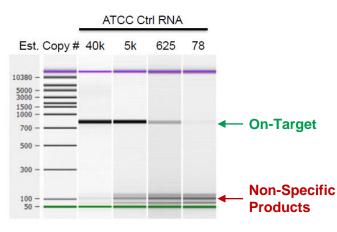
Preparing PCR reaction plates


- Expected sample volume after cleanup step is ~9.6 μL.
 - PCR amplification step is not time-sensitive
- Verify that the liquid solution color for each PCR Reaction is magenta and homogeneous

Starting and monitoring PCR reactions

- PCR thermal cycler program at this step takes ~1.5 hours to complete (27 cycles)
- Expect some degree of cumulative evaporation loss to occur from completing previous steps in the workflow – If any sample in a well has significantly less than 9.6 µL, add nuclease-free water to bring up the sample volume and document this action
- After completing the PCR step, amplified cDNA samples can be stored at -20°C until further processing

PCR amplification with barcoded M13 primers (cont.)



Example post-PCR DNA sizing analysis results for extracted viral RNA samples.

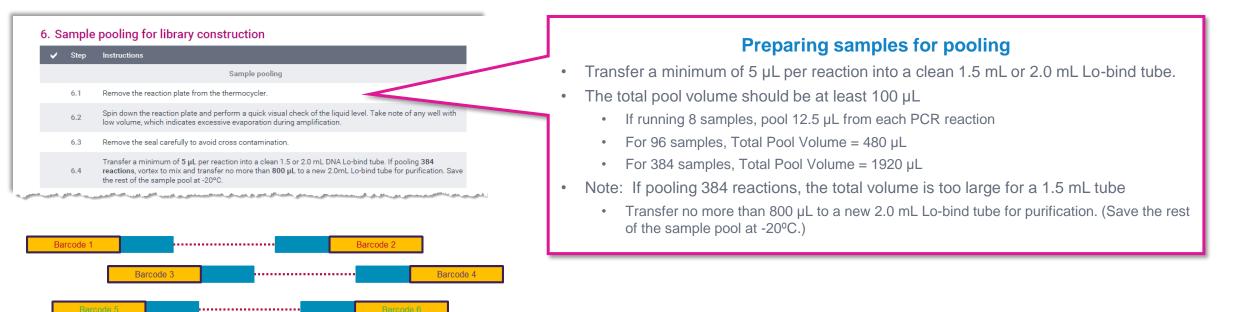
- Spot-checking PCR amplification products prior to pooling is highly recommended when performing the HiFiViral workflow for the first time
- 1.3X SMRTbell cleanup Bead purification can help remove non-specific amplification products
 PacBie

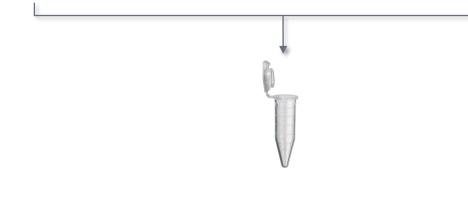
Post-PCR DNA Quantification and DNA Sizing QC (Optional)

Performing post-PCR DNA sizing quantification and sizing QC steps is recommended and can be useful for verifying sample integrity prior to SMRTbell library construction as well as downstream troubleshooting

Example post-PCR DNA sizing analysis results for ATCC Control RNA samples.

- Going from high to low copy number, the ontarget band diminishes, and the amount of nonspecific amplification products increases
- 1.3X SMRTbell cleanup Bead purification can help remove non-specific amplification products

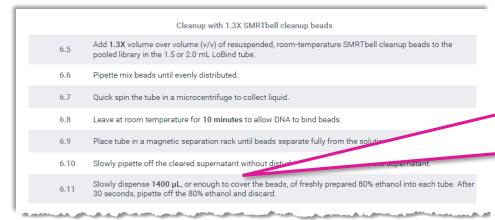

PCR Product Yield vs. Input Control RNA Copy Number



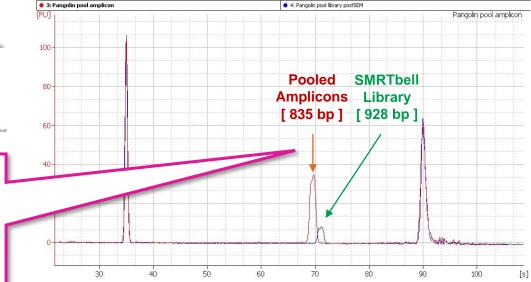
Example post-PCR yield results for ATCC Control RNA samples.

 Higher-copy number samples are generally correlated with higher PCR yields (*via* Qubit dsDNA HS assay quantification)

Sample pooling for SMRTbell library construction



.


•

Sample pooling for SMRTbell library construction (cont.)

Purifying pooled samples

- Add 1.3X volume of resuspended, room-temperature SMRTbell cleanup beads to the pooled library.
 - Bead incubation: 10 mins, Room Temperature
 - Elution incubation: 5 mins, Room Temperature
- The total amount of purified pooled (barcoded) DNA required for SMRTbell library construction is 500-1000 ng.

Recommended: Evaluate sample quality (concentration and size distribution).

- Take 1 µL of eluted DNA and dilute with 9 µL of elution buffer or water.
- Measure DNA concentration with a Oubit fluorometer using the 1x dsDNA HS kit.
- 6.19 (Optional): Measure DNA size distribution on the Agilent 2100 Bioanalyzer using the DNA 12000 chip. Follow all manufacturer's instructions. Target peak should be ≥700 bp with minimal non-specific peaks near 170-200 bp.

```
the property of the second property of the second property of the formation of the formation of the
```

DNA sizing QC

- DNA sizing QC can optionally be performed on the pooled sample using an Agilent 2100 Bioanalyzer
 - A target peak of ≥700 bp should be detected ٠
 - Non-specific amplicons (~170-200 bp) should be removed • completely.

PacBi

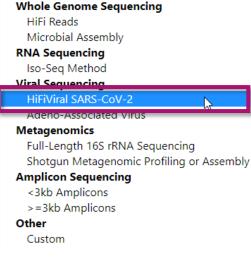
SHATPOILIPANICORS

17000 10380

700 -

500

300 -


50

Multiplexed SARS-CoV-2 library sequencing workflow recommendations

Sample Setup & Run Design recommendations for HiFiViral SARS-CoV-2 libraries

In SMRT Link Sample Setup & Run Design, select 'Viral Sequencing' / 'HiFiViral SARS-Cov-2' for application type

Binding kit 3.1 & cleanup beads (102-333-400) is recommended for preparing AAV samples for sequencing.

• We recommend using Sequel II binding kit 3.1 & cleanup beads (102-333-400) to perform ABC (anneal primer / bind polymerase / clean up complex) with HiFiViral SARS-CoV-2 samples

 Refer to Quick reference card – Loading and pre-extension time recommendations for the Sequel II and Ile systems (<u>101-769-100</u>) for updates to ABC workflow for specific applications Sequel II binding kit 3.1 & cleanup beads (102-333-400) includes the following components:

- Sequencing primer 3.1
- Sequel II polymerase 2.1
- SMRTbell cleanup beads for complex cleanup
- DNA internal control 3.1 (defined 2 kb template bound to Polymerase 2.1)
- Supports ≥24 binding reactions, and up to 4 SMRT Cells 8M per binding reaction (96 cells total), depending on use case, sample size and concentration

HiFiViral SARS-CoV-2 Sample Setup guidance

PacBi

Use SMRT Link Sample Setup High-Throughput (HT) mode and follow instructions to perform ABC (anneal primer / bind polymerase / clean up complex) using recommended settings for HiFiViral SARS-CoV-2 samples

PacBio Sample Setup -		smark (Lab Tech) 🌼 🤗		Sample Group >
			Actions	Copy Remove Lock Automate
Sample Setup			Name	Example HiFiViral SARS-CoV-2 Sample Setup
+	lew Calculation	± Export	Comment 🕄	This batch includes Pooled_SARS-CoV-2_Sample_01 Pooled_SARS-CoV-2_Sample_02
Version: O Classic I High-Throughput		is automatically specified	Application	HiFiViral SARS-CoV-2
Sample Setup HT for Sequel II and Seque		ral SARS-CoV-2 samples.	Binding Kit	Sequel® II Binding Kit 3.1
□ Name	Date Created ψ Number of Samples	Comment Structure Created By	Number of Samples	2 samples
Example HiFiViral SARS-CoV-2 Sample Setup	2022-04-18, 04:52:48 PM 2	his batch includes HiFiViral_SARS-CoV-2_Sample 1	SMRT Cells per Sample	1 cells
			Available Volume per Sample 🕄	15 uL
			Insert Size 🕄	800 bp
		implified, streamlined workflow to	Sample Concentration 🕄	3 ng/uL
5		mples with similar library properties (such	Cleanup Anticipated Yield 🕄	60 %
	d DNA concentration) in para		Recommended Concentration on Plate	100-300 pM
You can also export the	e calculated values to a CSV	file for laboratory automation	Specify Concentration on Plate	200 pM
			Pipetting Volume 🕄	1 uL
Note: W	e recommend starting with an on-	plate loading concentration	Warnings	
	of 200 pM for HiFiViral SARS-Co her or lower if needed to achieve		Example Sample Setup H batch comprised of tw	

31

samples.

HiFiViral SARS-CoV-2 Run Design guidance

Follow SMRT Link Run Design instructions to set up a sequencing run using recommended settings for HiFiViral SARS-CoV-2 samples

	Run Information	Sample Information	
Select HiFiViral SARS-CoV-2 from the Application field drop-down menu in SMRT Link Run Design	System Type SEQUEL II SEQUEL IIe	SAMPLE 1: Pooled_SARS_CoV-2_Sample_	01, A01, 8 hour movie, 800 bp insert
The following fields are auto-populated and high-	Run Name	Application	HiFiViral SARS-CoV-2
lighted in green:	Run 04.18.2022 15:47	Required Well St mple Name 7	Pooled SARS CoV-2 Sample 01
Template Prep Kit	Run Comments	Bio Sample Name 3	Pooled_SAKS_COV-2_Sample_UT
Binding Kit		Sample Comment	
-	Experiment Name		
Sequencing Kit		Sample Well	A01
DNA Control Complex	Experiment ID	Template Prep Kit Required	SMRTbell® Prep Kit 3.0 \$
Insert Size	Estimated Run Duration (hours): 11.3	Binding Kit Required	Sequel® II Binding Kit 3.1
Movie Time Per SMRT Cell	Run Reagents / Consumables	Sequencing Kit Required	Sequel® II Sequencing Plate 2.0 (4 rxn)
	1 SMRT Cell	DNA Control Complex	Sequel® II DNA Internal Control Complex 3.1
	1 sequencing reagent plate 1 mineral oil tube 3 boxes of tips	Insert Size (bp) Required	800
	1 mixing plate	Recommended Concentration on Plate (pM)	100-300 pM
By default, Automatic Launch of SA	ite i	On-Plate Loading Concentration (pM) Required	200
analysis is specified to be 'YE		Movie Time per SMRT Cell (hours)	8
		Use Pre-Extension	YES ONO
		Auto Analysis	
Note: By default, all newly created run designs (regardless of application type) will specify to automatically perform		Automatic Launch of SARS-CoV-2 Analysis	• YES ONO
CCS analysis and output only HiFi reads		Analysis Name Required	SARS_CoV-2_Sample_01_Analysis
			CCS Analysis will be performed on-instrument to produce HiFi .bam files.

Example sample information entered into Run Design for sequencing a HiFiViral SARS-CoV-2 sample.

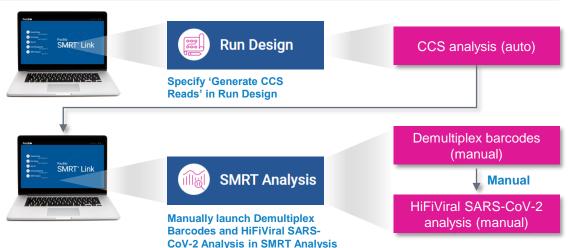
Multiplexed SARS-CoV-2 data analysis recommendations

Use SMRT Link to easily analyze multiplexed HiFi data from SARS-CoV-2 surveillance samples

Analyze HiFiViral SARS-CoV-2 HiFi Data Using SMRT Link* by Creating an **Auto Analysis** in Run Design or by Performing a **Manual Analysis** in SMRT Analysis

Creating an Auto Analysis in Run Design

- HiFiViral SARS-CoV-2 Analysis Application can be run using the Auto Analysis feature available in SMRT Link Run Design
- This optional Run Design feature allows users to automatically complete all necessary analysis steps immediately after sequencing on the Sequel II and IIe Systems without manual intervention
- HiFiViral Auto Analysis workflow automatically launches CCS Analysis, Demultiplex Barcodes, and HiFiViral SARS-CoV-2 Analysis.


HiFiViral SARS-CoV-2 Auto Analysis Workflow

CCS analysis (auto) ↓ Auto Demultiplex barcodes (auto) ↓ Auto HiFiViral SARS-CoV-2 analysis (auto)

Performing a Manual Analysis in SMRT Analysis

- HiFiViral SARS-CoV-2 Analysis Application can also be run by performing a manual analysis in SMRT Link SMRT Analysis
- This process requires users to manually prepare input data for the HiFiViral SARS-CoV-2 Analysis Application
- HiFiViral manual analysis workflow requires manually specifying CCS Analysis ('Generate HiFi Reads') in Run Design, and then manually launching Demultiplex Barcodes and HiFiViral SARS-CoV-2 Analysis applications in SMRT Analysis

HiFiViral SARS-CoV-2 Manual Analysis Workflow

HiFiViral SARS-CoV-2 analysis setup – Auto analysis

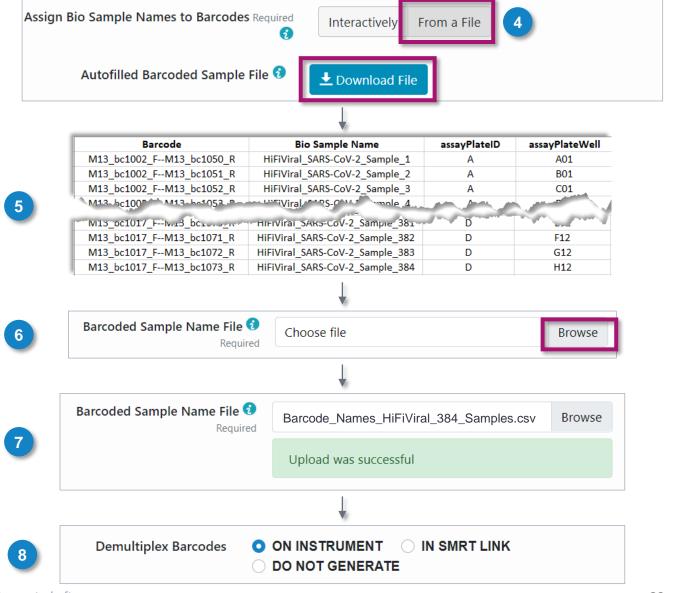
How to Use SMRT Link Run Design to create an auto analysis

A. Specify auto analysis in Run Design

- 1. Under Auto Analysis, select YES for 'Automatic Launch of SARS-CoV-2 Analysis'
- 2. Enter an Analysis Name

B. Specify barcoded sample options

Under **Barcoded Sample Options**, the following options are automatically specified if *HiFiViral SARS-CoV-2* is selected for Application Type in Run Design:


- 1. Sample is Barcoded: Yes
- 2. Barcode Set: HiFiViral_SARS-CoV-2_M13barcodes
- 3. Same Barcodes on Both Ends of Sequence: **No**

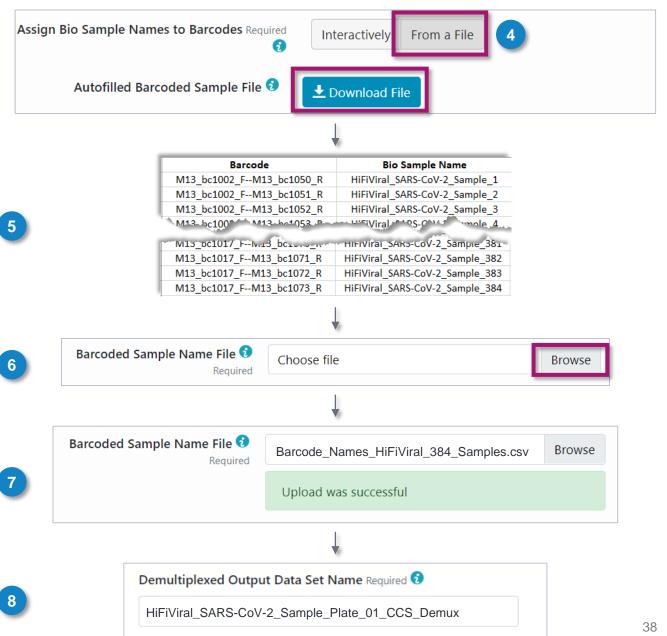
HiFiViral SARS-CoV-2 analysis setup – Auto analysis (cont.)

- 4. Under Assign Bio Sample Names to Barcodes: Click From a File, then click Download File.
- Edit the file and enter the biological sample name, Plate ID and Plate Well associated with each unique forward + reverse barcode pair listed in the first column; then save the file.
 - Delete entire rows of barcodes not used
 - Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.
- 6. Browse for the Barcoded Sample File you just edited and click on Open.
- 7. You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.
- 8. Specify to perform barcode demultiplexing oninstrument (Sequel IIe system only) or in SMRT Link.

Refer to the "Working with Barcoded Data" section in the <u>SMRT Link User Guide</u> for further details on how to specify barcode setup and sample name information in a Run Design

HiFiViral SARS-CoV-2 Analysis Setup – Manual Analysis

How to use SMRT Link SMRT Analysis to perform a manual analysis


A. Prepare input data for the HiFiViral SARS-CoV-2 analysis application by running Demultiplex Barcodes

- 1. In SMRT Analysis, select the SMRT Link **Demultiplex Barcodes** data utility, where the input to that application are HiFi Reads. (If HiFi Reads have not already been generated on the instrument, run CCS Analysis first.)
- 2. Barcode Set: Select Barcoded M13 Primer Plate
- 3. Barcodes on Both Ends of Sequence: Select No

SMRT Analysis / Create New Analysis	
1. Select Data 2. Select Analysis	
Data Utility Required	
Demultiplex Barcodes 🗧	
▲ Import Analysis Settings ▲ Export Associated Inputs	
Barcode Set Required	
Barcoded M13 Primer Plate	
Same Barcodes on Both Ends of Sequence 쥥	

- 4. Under Assign Bio Sample Names to Barcodes: Click From a File, then click Download File.
- 5. Edit the file and enter the **biological sample name** associated with each unique forward + reverse barcode pair listed in the first column; then save the file.
 - Delete entire rows of barcodes not used
 - Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.
- 6. Browse for the Barcoded Sample File you just edited and click on Open.
- 7. You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.
- 8. Enter a Name for the Demultiplexed Output Data Set.

Refer to the "Working with Barcoded Data" section in the <u>SMRT Link User Guide</u> for further details on how to specify barcode setup and sample name information in a Run Design

B. Set up and launch HiFiViral analysis application

- After running the Demultiplex Barcodes application, create a new analysis using SMRT Analysis > Create New Analysis.
- 2. Name the analysis
- 3. Select Data Types > HiFi Reads.
- Select all the demultiplex samples contained in the Data Set and choose Analysis of Multiple Data Sets > One Analysis for All Data Sets.
- Under Analysis of Multiple Data Sets, specify 'One Analysis for All Data Sets'
- 6. Click Next.

PACBIO	O [°] SMRT Analysis -							sizhang (Lab	o Tech) 🔅
IRT Analys	sis / Create New Analysis							Pro	jects: All My Proj
1. Select	t Data 2. Select A	nalysis						E Copy From	m Next ▶
nalysis N	Name Required		Analysis T	уре					6
FiViral_	SARS-CoV-2_Manual_Ana	lysis_Demo		O ANALYSIS 🔵 AN	ALYSIS				
ata Type	e 🕜		Analysis c	of Multiple Data Sets					
HiFi Rea	ids 3		One Ana	alysis for All Data Sets	5	\$			
ta Cata fai				Choose an option when multiples Data Sets are selected.					
Back	r selected Data Type displayed in			ption when multiples Data Se	ts are selected.				
	4	table below. iViral_DataSet_96_ Data Set Details >		ption when multiples Data Se	ts are selected.	Sample Details		Run Data >	
Back	4	iViral_DataSet_96	_Demux	ption when multiples Data Se	ts are selected.	Sample Details Bio Sample Name	Barcode Name ≎ ⊽	Run Data > Total Length of Read	Instrument I
Back	4 Members of HiF	i <mark>Viral_DataSet_96</mark> Data Set Details >	_Demux			•	Barcode Name ≎ ⊽ M13_bc1014_FM13		Instrument N 64011
Back	4 Members of HiF	i <mark>Viral_DataSet_96</mark> Data Set Details > Well Sample Name \circ]	_Demux Run Name ≎ ⊽	Date Created ◇ ▽	Created By ≎ ⊽	Bio Sample Name		Total Length of Read	
Back	4 Members of HiFi Name ≎ ⊽ HiFiViral_DataSet_D	IViral_DataSet_96 Data Set Details > Well Sample Name Twist 14-17-93well	_Demux Run Name ≎ ♥ 20210917-Twist-Cr	Date Created ♥ 2021-09-20, 04:59:	Created By ≎ ♥ sizhang	Bio Sample Name 수 기 Crtl17-83	M13_bc1014_FM13	Total Length of Read	64011
Back	4 Members of HiF Name ◇ ♡ HiFiViral_DataSet_D HiFiViral_DataSet_D	iViral_DataSet_96 Data Set Details > Well Sample Name Twist 14-17-93well Twist 14-17-93well	Demux Run Name ◊ ♥ 20210917-Twist-Cr 20210917-Twist-Cr	Date Created ♥ 2021-09-20, 04:59: 2021-09-20, 04:59:	Created By ≎ ⊽ sizhang sizhang	Bio Sample Name ≎ Crtl17-83 Crtl17-32	M13_bc1014_FM13 M13_bc1006_FM13	Total Length of Read 12,616,790 56,575,682	64011 64011
Back	4 Members of HiFi Name ≎ 7 HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D	IViral_DataSet_96 Data Set Details > Well Sample Name Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well	Demux Run Name ◊ 𝔅 20210917-Twist-Cr 20210917-Twist-Cr 20210917-Twist-Cr	Date Created ♥ 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59:	Created By ≎ ♥ sizhang sizhang sizhang	Bio Sample Name ◇ ♡ Crtl17-83 Crtl17-32 Crtl17-09	M13_bc1014_FM13 M13_bc1006_FM13 M13_bc1002_FM13	Total Length of Read 12,616,790 56,575,682 43,631,875	64011 64011 64011
Back	4 Members of HiF Name ◇ ♡ HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D	iViral_DataSet_96 Data Set Details > Well Sample Name Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well Twist 14-17-93well	Demux Run Name ◊ ♥ 20210917-Twist-Cr 20210917-Twist-Cr 20210917-Twist-Cr	Date Created ♥ 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59:	Created By ネ ア Sizhang Sizhang Sizhang Sizhang	Bio Sample Name ♀ ♥ Crtl17-83 Crtl17-32 Crtl17-09 Crtl17-95	M13_bc1014_FM13 M13_bc1006_FM13 M13_bc1002_FM13 M13_bc1016_FM13	Total Length of Read 12,616,790 56,575,682 43,631,875 141,207	64011 64011 64011 64011
Back	A Members of HiF Members of HiF Name ≎ 7 HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D HiFiViral_DataSet_D	Viral_DataSet_96 Data Set Details > Well Sample Name Twist 14-17-93well Twist 14-17-93well	Demux Run Name ◊ 𝔅 20210917-Twist-Cr 20210917-Twist-Cr 20210917-Twist-Cr 20210917-Twist-Cr 20210917-Twist-Cr	Date Created ♥ 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59: 2021-09-20, 04:59:	Created By ◇ ♥ sizhang sizhang sizhang sizhang sizhang sizhang	Bio Sample Name > > Crtl17-83 Crtl17-32 Crtl17-09 Crtl17-95 Crtl_14-29	M13_bc1014_FM13 M13_bc1006_FM13 M13_bc1002_FM13 M13_bc1016_FM13 M13_bc1006_FM13	Total Length of Read 12,616,790 56,575,682 43,631,875 141,207 41,899,685	64011 64011 64011 64011 64011

- 7. Select HiFiViral SARS-CoV-2 Analysis from the **Analysis Application** list.
- 8. Under **Associated Inputs**, SARS-CoV-2 Genome NC_045512.2 (the Wuhan reference genome) is automatically loaded as the reference genome; advanced users may select a different reference if desired.
- To generate the optional Plate QC graphical summary, click Advanced Parameters and load a CSV file using the provided template (assayPlateQC_template_4by96.csv) as a guide.

	SMRT Analysis / Create New Analysis							
	1. Select Data 2. Select Analysis							
	Analysis Application Required							
	HiFiViral SARS-CoV-2 Analysis \$							
	✓ Import Analysis Settings ✓ Export							
	Associated Inputs							
	Reference Genome Required							
3	SARS-CoV-2 Genome NC_045512.2							

10

10. Under Advanced Parameters, download the provided CSV template

(assayPlateQC_template_4by96.csv) as a guide and edit the file.

Enter the **biological sample name**, **Plate ID** and **Plate Well** associated with each unique forward + reverse barcode pair listed in the first column; then save the file.

- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.

Browse for the Plate QC File you just edited and click on Open.

You will see 'Upload was successful' appear on the line below, assuming the file is formatted correctly.

Plate QC CSV	/ 🔂 Min	imum Base Coverage 📀	Minimum Variant	Frequency 😚
Choose file	Browse 4		0.5	
لے Downloa	d Template			
Minimum Ba	rcode Score 🕄 Adv	ranced Processing Options 🕄	Compute Setting	s 🔁
80			select	
	Barcode	Bio Sample Name	assayPlateID	assayPlateWell
_	M13_bc1002_FM13_bc1050_R	HiFiViral_SARS-CoV-2_Sample_1	Α	A01
	M13_bc1002_FM13_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2	Α	B01
	M13_bc1002_FM13_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3	Α	C01
	M13_bc1002_FM13_bc1053_R	HiFiViral_SARS-CoV-2_Sample_4	Α	D01
	M13_bc1002_FM13_bc1054_R	HiFiViral_SARS-CoV-2_Sample_5	Α	E01
	M13_bc1002_FM13_bc1055_R	HiFiViral_SARS-CoV-2_Sample_6	A	F01
	M13_bc1002_FM13_bc1056_R	HiFiViral_SARS-CoV-2_Sample_7	А	G01
	M13_bc1002_FM13_bc1057_R	HiFiViral_SARS-CoV-2_Sample_E		ч01
	M13_bc1002_FM13_bc1058_R	HiFiViral_SARS-CoV-2_Sample_9	A	A02
	M13_bc1002_FM13_bc1059_R	HiFiViral_SARS-CoV-2_Sample_1	Plate QC CSV 🔞	
	M13_bc1002_FM13_bc1060_R	HiFiViral_SARS-CoV-2_Sample_11		
	M13_bc1002_FM13_bc1061_R	HiFiViral_SARS-CoV-2_Sample_12	assayPlateQC_templa	te_4by96_HiFiVi Browse
	M13_bc1002_FM13_bc1062_R	HiFiViral_SARS-CoV-2_Sample_1:	▲ Download Templat	e

11. Click Start to start the analysis.

Comparison of CSV templates for demultiplex barcodes analysis and HiFiViral SARS-CoV-2 assay plate QC analysis

Demultiplex barcodes CSV

Barcode	Bio Sample Name
	•
M13_bc1002_FM13_bc1050_R	HiFiViral_SARS-CoV-2_Sample_1
M13_bc1002_FM13_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2
M13_bc1002_FM13_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3
M13-bc100 M13-bc1053-P	Viral S-Construction
M13_pc1017_FN.13_bc1017_F	HIFIVIPALSAKS-COV-2_Sample_381
M13_bc1017_FM13_bc1071_R	HiFiViral_SARS-CoV-2_Sample_382
M13_bc1017_FM13_bc1072_R	HiFiViral_SARS-CoV-2_Sample_383
M13_bc1017_FM13_bc1073_R	HiFiViral_SARS-CoV-2_Sample_384

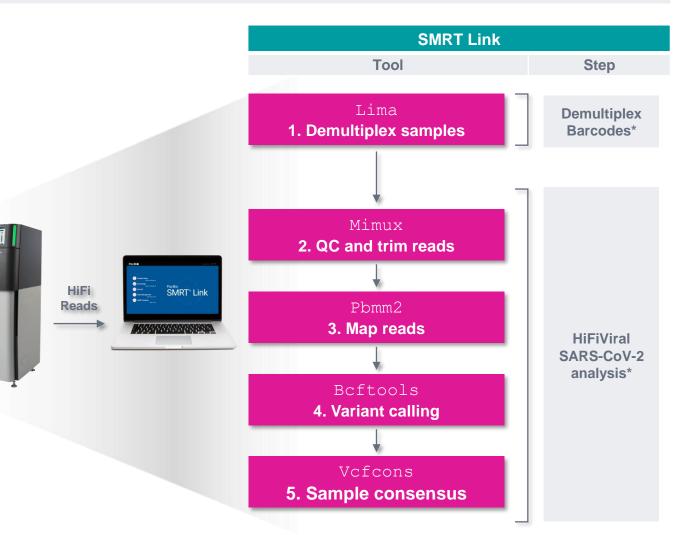
CSV template contains two columns

HiFiViral SARS-CoV-2 assay plate QC CSV

Barcode	Bio Sample Name	assayPlateID	assayPlateWell
M13_bc1002_FM13_bc1050_R	HiFiViral_SARS-CoV-2_Sample_1	А	A01
M13_bc1002_FM13_bc1051_R	HiFiViral_SARS-CoV-2_Sample_2	А	B01
M13_bc1002_FM13_bc1052_R	HiFiViral_SARS-CoV-2_Sample_3	А	C01
M13-bc100 M13-bc1052.P	Wiral S-C Manuale 4	And a	and a second sec
M13_001017_FMar3_bcarage	HIFIVITAL_SAK5-COV-2_Sample_381	D	and and
M13_bc1017_FM13_bc1071_R	HiFiViral_SARS-CoV-2_Sample_382	D	F12
M13_bc1017_FM13_bc1072_R	HiFiViral_SARS-CoV-2_Sample_383	D	G12
M13_bc1017_FM13_bc1073_R	HiFiViral_SARS-CoV-2_Sample_384	D	H12

CSV template contains <u>four</u> columns

When editing CSV templates for Demultiplex Barcodes analysis and HiFiViral SARS-CoV-2 Assay Plate QC analysis:

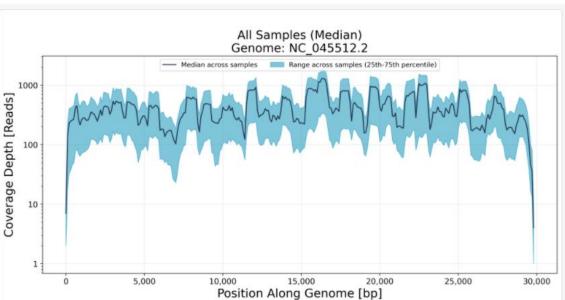

- Delete entire rows of barcodes not used
- Allowed characters*: Alphanumeric; dot; underscore; hyphen. Other characters will be automatically removed.
 - \rightarrow **DO NOT** include spaces Sample Names must be unique and will be truncated after any spaces.

HiFiViral SARS-CoV-2 analysis workflow

SMRT Link HiFiViral SARS-CoV-2 auto analysis* workflow algorithm descriptions

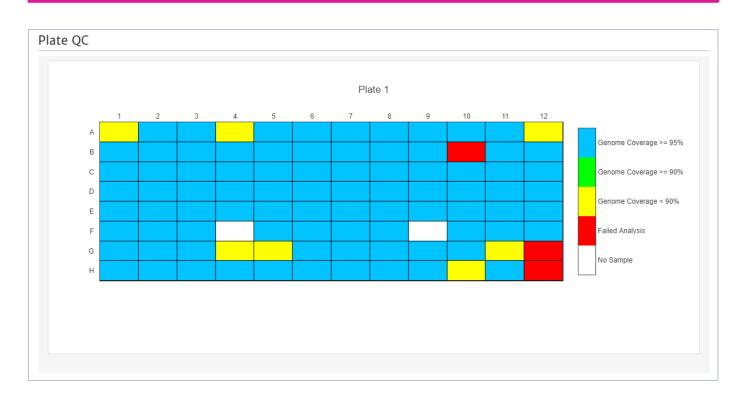
- Demultiplex barcodes using the lima tool, where the input to that application are HiFi Reads HiFi (≥Q20 CCS) Reads (BAM format).
- 2. Process the reads to trim the probe arm sequences using the mimux tool.
- 3. Align the reads to the reference genome using pbmm2.
- 4. Call and filter variants using bcftools, generating the raw variant calls in VCF file format. Filtering in this step removes low-quality calls (less than Q20), and normalizes indels.
- 5. Filter low-frequency variants using vcfcons and generate a consensus sequence by injecting variants into the reference genome. At each position, a variant is called only if both the base coverage exceeds the minimum base coverage threshold and the fraction of reads that support this variant is above the minimum variant frequency threshold.

PacBio * The SMRT Link Demultiplex Barcodes data utility and HiFiViral SARS-CoV-2 analysis application must each be launched <u>manually</u> if Auto Analysis is <u>not</u> specified in Run Design when setting up a sequencing run on Sequel II or IIe Systems with HiFiViral SARS-CoV-2 Kit library samples.

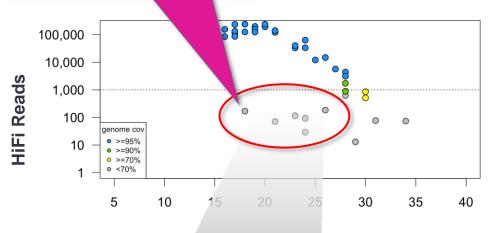

HiFiViral SARS-CoV-2 analysis outputs

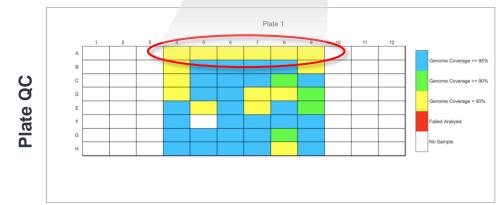
- Per-sample analysis outputs include:
 - Consensus sequence (FASTA)
 - Variant calls (VCF) .
 - HiFi Reads aligned to the reference (BAM) .
 - Sample Summary table including: Count of variable sites, ٠ genome coverage, read coverage, and probability of multiple strains, and other metrics
 - Plot of HiFi Read coverage across the SARS-CoV-2 genome •

	utput File Name Prefix Example:analysis-Twist Bioscience Control 17-136917		
	File	Size	Туре
*	All Samples, Probe Counts TSV	935 KB	zip
-	Sample Summary Table CSV	9 KB	CSV
-	All Samples, Raw Variant Call VCF	267 KB	zip
-	All Samples, Consensus Sequence Aligned BAM	819 KB	zip
-	All Samples, HiFi Reads Mapped BAM	515 MB	zip
-	All Samples, Variant Call VCF	250 KB	zip
-	Analysis Log	737 KB	log
-	All Samples, Genome Coverage Plots	30 MB	zip


mple Sumn	ple Summary								
Bio Sample Name	Substitutions	Insertions	Deletions	Reads	Read Coverage	On-Target Rate	Multiple Strains (Probability)	Ns	Genome Coverage
4655747	36	0	3	12,964	288	99.99%	No (0.00)	156	99.47%
4657055	Sample 1	0	3	1,075	24	99.81%	No (0.00)	761	97.45%
4656469	Sample 2	0	3	2,289	51	99.91%	No (0.00)	219	99.26%

Sample 3 Genome Coverage All Samples (Median)




HiFiViral SARS-CoV-2 analysis outputs (cont.)

 HiFiViral SARS-CoV-2 analysis application also outputs a graphical summary of performance across all samples in assay plate layout for Sample Plate QC evaluation

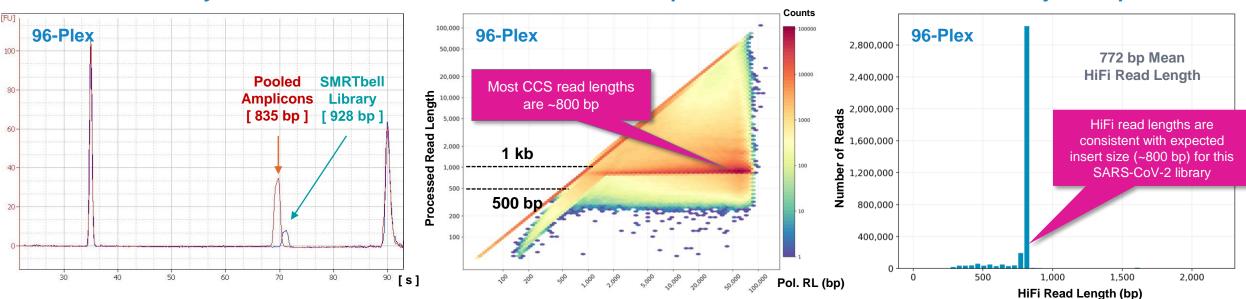
Lower HiFi read counts due to evaporation-induced edgeeffects during viral enrichment

Downloading HiFiViral SARS-CoV-2 analysis results in SMRT Link

To download the HiFiViral SARS-CoV-2 analysis results, click on the File Downloads tab to download the desired output files.

analysis Oversions	File Downloads		
Analysis Overview	Edit Output File Name Prefix Example:analysis-Twist_RNA_23_Ct29p8_rep2-45495		
Summary Report			
	File	Size	Тур
Data	🗎 All Samples, Probe Counts TSV	994 KB	zip
File Downloads	Sample Summary Table CSV	9 KB	CSV
	All Samples, Raw Variant Call VCF	244 KB	zip
SMRT Link Log	All Samples, Consensus Sequence Aligned BAM	791 KB	zip
	🖆 All Samples, HiFi Reads Mapped BAM	707 MB	zip
	All Samples, Variant Call VCF	206 KB	zip
	All Samples, Genome Coverage Plots	33 MB	zip
	🗎 All Samples, Consensus Sequence FASTA	701 KB	zip
	All Samples, HiFi Reads FASTQ	871 MB	zip
	Analysis Log	761 KB	log
	🖆 Analysis Log	25 KB	log

Downloading HiFiViral SARS-CoV-2 analysis results in SMRT Link (cont.)


analysis-Twist_RNA_23_Ct29p8_rep2-45495-samples.consensus.fasta		Folder
Twist_RNA_13_Ct19p1_rep1.consensus.fasta		FASTA File
Twist_RNA_13_Ct19p1_rep2.consensus.fasta		FASTA File
Twist_RNA_13_Ct19p1_rep3.consensus.fasta		
Twist_RNA_13_Ct21p9_rep1.consensus.fasta		
Twist_RNA_13_Ct21p9_rep2.consensus.fasta	For each sample, HiFiViral analysis applicati	
Twist_RNA_13_Ct21p9_rep3.consensus.fasta	a single SARS-CoV-2 consensus seq	uence
Twist_RNA_13_Ct22p6_rep1.consensus.fasta	OU ND	FASTA FILE
Twist_RNA_13_Ct22p6_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct22p6_rep3.consensus.fasta		FASTA File
Twist_RNA_13_Ct24p4_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct24p4_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct24p4_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct26p2_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct28_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct29p8_rep1.consensus.fasta	30 KB	FASTA File
M Twist_RNA_13_Ct29p8_rep2.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct29p8_rep3.consensus.fasta	30 KB	FASTA File
M Twist_RNA_13_Ct31p5_rep1.consensus.fasta	30 KB	FASTA File
Twist_RNA_13_Ct31p5_rep2.consensus.fasta	30 KB	FASTA File
M Twist_RNA_13_Ct31p5_rep3.consensus.fasta	30 KB	FASTA File
Twist_RNA_14_Ct19p1_rep1.consensus.fasta	30 KB	FASTA File

Multiplexed SARS-CoV-2 library example performance data

Example sequencing performance for Twist synthetic SARS-CoV-2 RNA controls [6 x 5 kb fragments]

SMRTbell library QC and primary sequencing metrics for 96-plex and 384-plex Twist control samples

Library QC

Raw Data Report

	96-Plex	384-Plex
Yield of Pooled Barcoded PCR Products	2049 ng	12,400 ng
Pooled DNA Input for Library Construction	1000 ng	1000 ng
Final Yield of SMRTbell cleanup Bead Purified Library (%)	142 ng (14.2%) the HiFiViral S	408 ng (40.8%) ARS-CoV-2 Kit.

Pooled barcoded PCR products were purified with 1.3X SMRTbell cleanup Beads and constructed into SMRTbell libraries with SMRTbell Express TPK

2.0.

PacBi

	96-Plex	384-Plex
Raw Base Yield	145.6 Gb	139.4 Gb
Mean Polymerase RL	26.3 kb	25.1 kb
P0	18.9%	19.7%
P1	69.2%	69.4%
P2	11.9%	10.9%

200 pM on-plate concentration / 8-h movie time / No Pre-Extension Time / No Adaptive Loading

96-Plex	384-Plex
3.6 M	3.5 M
2.8 Gb	2.8 Gb
772	788
QV60	QV60
21	21
	3.6 M 2.8 Gb 772 QV60

CCS Analysis Report

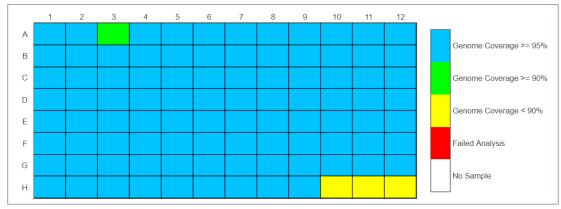
49

Example sequencing performance for Twist synthetic SARS-CoV-2 RNA controls [6 x 5 kb fragments] (cont.)

HiFiViral SARS-CoV-2 auto analysis outputs for 96-plex Twist control samples

Summary Report

Value	Analysis Metric
96	Samples
93	Samples With Genome Coverage > 90%
92	Samples With Genome Coverage > 95%
0	Samples Failing Workflow


93 Positive Control samples showed ≥90% genome coverage (Blue and Green wells in Plate QC image)

 3 Negative Control samples showed <90% genome coverage as expected (Yellow wells)

Sample Summary

Bio Sample Name	Substitutions	Insertions	Deletions	Reads	Read Coverage	On- Target Rate	Multiple Strains (Probability)	Ns	Genome Coverage
Crtl17- 96	0	0	0	5	0	100.00%	No (0.00)	29,903	0.00%
Crtl17- 31	32	1	1	55,235	1,197	99.99%	No (0.00)	616	97.94%
Crtl_14- 27	31	0	4	35,341	762	100.00%	No (0.00)	682	97.72%
Crtl_14- 03	30	0	4	9,362	177	100.00%	No (0.02)	1,556	94.79%

Plate QC

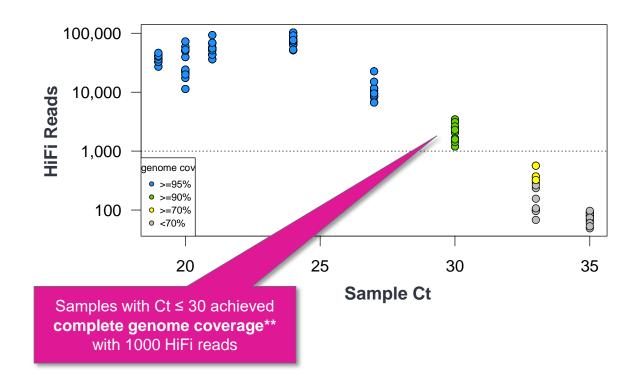
HiFiViral SARS-CoV-2 Kit delivers robust genome coverage performance across variable input quantities and multiplex levels

Example SARS-CoV-2 genome coverage results obtained for twist control samples

Experimental Design

96-plex prepared with 4 Synthetic Twist RNA Controls at 8 input quantities in replicates of 3.

TWIST CONTROL	VARIANT	PART NUMBER
14	Alpha (B.1.1.7)	103907
15	Alpha (B.1.1.7)	103909
16	Beta (B.1.351)	104043
17	Gamma (P.1)	104044

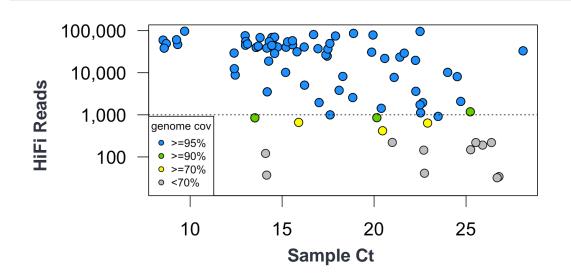

RNA Input Quantity*

SAMPLE CT	COPY NUMBER	ln R
19	6 M	6
20	3 M	C
21	1 M	in
24	100,000	a
27	10,000	
30	1,000	
33	100	
35	3	

nput Quantity Input of RNA controls ranged from million copies down to 3. Copy number is converted nto Ct scale after Han *et* al. 2021.*

* Han M.S., et al. (2021). RT-PCR for SARS-CoV-2: quantitative versus qualitative. The Lancet Infectious Disease 21(2) p165.

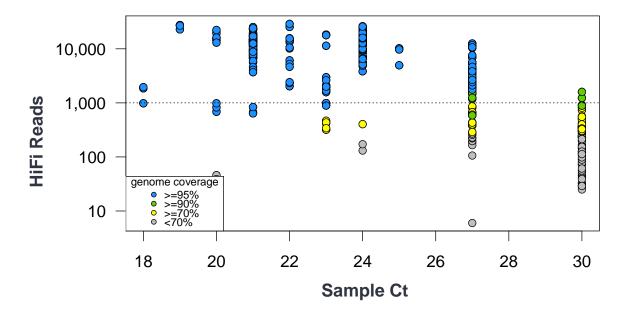
96-Plex of Twist Control Samples


- 4-fold HiFi Read depth required to output a consensus base
- ~1,000 mapped HiFi reads reliably yields ≥90% genome coverage

^{**} Complete = ≥90% genome coverage

HiFiViral SARS-CoV-2 Kit delivers robust genome coverage performance across variable input quantities and multiplex levels (cont.)

Example SARS-CoV-2 genome coverage results obtained for surveillance samples

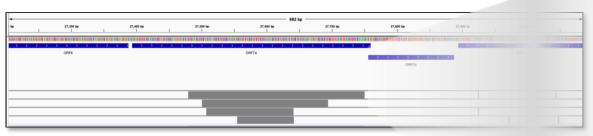


96-plex of "Real" Samples for Surveillance

Genome completeness in surveillance samples

SAMPLE INPUT	NO. OF SAMPLES	> 90% GENOME COVERAGE
Known Ct	84	83%
Unknown Ct	9	44%
Twist Controls	2	100%
Negative Control	1	0

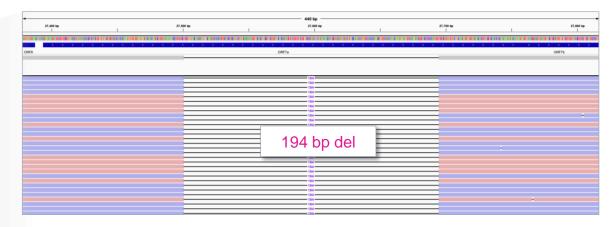
384-plex of Controls and Nasopharyngeal Extracts

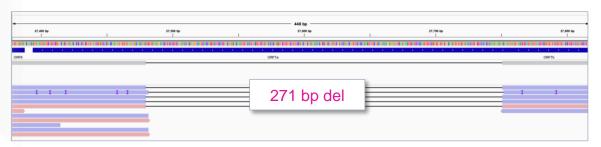

Genome completeness in 384-plex

SAMPLE INPUT	NO. OF SAMPLES	> 90% GENOME COVERAGE
Controls (Ct<30)	216	90%
NP Extracts	144	85%

HiFiViral SARS-CoV-2 Kit enables comprehensive characterization of variants for surveillance and COVID-19 research

SARS-CoV-2 variant calling achieves high precision and recall for characterization of SNVs and SVs

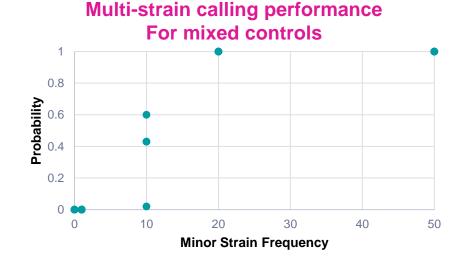

Recovery of Large Deletions in ORF7a



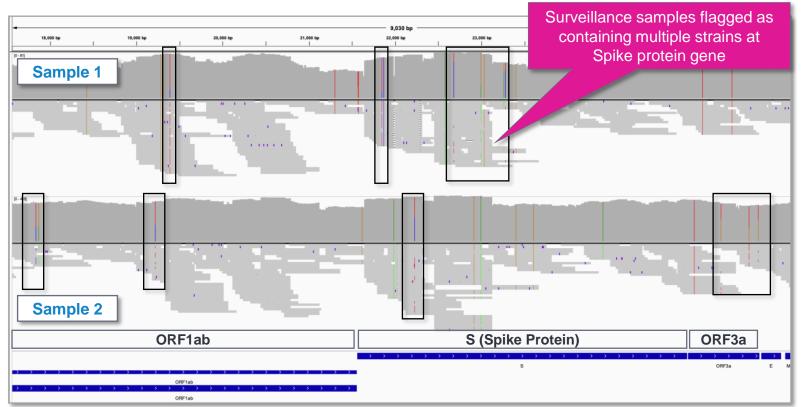
Deletions (87 - 271 bp) are called in VCF and consensus sequence.

SNV Calling & Strain Assignment for Controls in a 384-plex

CONTROL SAMPLE	NEXTCLADE ASSIGNMENT	COMPLETE GENOMES	PRECISION	RECALL	NEXTSTRAIN ACCURACY
Twist 01	19A	29	1	94.8%	100%
Twist 13	20C	24	1	99.7%	100%
Twist 14	20I (Alpha, V1)	25	1	99.9%	100%
Twist 15	20I (Alpha, V1)	24	1	99.9%	100%
Twist 16	20H (Beta, V2)	24	1	100%	100%
Twist 17	20J (Gamma, V3)	24	1	100%	100%
Twist 23	21A (Delta)	24	99.1%	99.4%	100%


Example visualizations of HiFi reads spanning around large deletions.

 HiFi reads can detect SNVs and SVs with high precision and recall for accurate SARS-CoV-2 strain assignment


HiFiViral SARS-CoV-2 Kit Enables detection of minor variants and multiple strains* in the same sample

Mixed Control Experiment

- Titrated mixed controls •
- Minor frequency: 1% to 50%
- Binomial model for multi-strain detection*
- Achieve P > 95% at >20% minor frequency**

Detection of Minor Variants in Surveillance Samples

Possible Sources of Multiple Strains in Sample

- Sample contamination, lab error, infection with multiple strains
- We recommend users confirm presence of multiple strains with additional experiments

Multi-strain detection is supported for samples with Ct < 26 **PacBi**

** Power of detection increases with more variable sites.

Technical documentation & applications support resources

Technical resources for SARS-CoV-2 library preparation, sequencing & data analysis

Sample Preparation Literature

- Procedure & checklist PacBio HiFiViral high-throughput multiplexing for full-viral genome sequencing of SARS-CoV-2 using SMRTbell prep kit 3.0 (<u>102-396-100</u>)
- Quick Reference Card Loading and Pre-extension Recommendations for the Sequel II/IIe Systems (<u>101-769-100</u>)
- Overview Sequel Systems Application Options and Sequencing Recommendations (<u>101-851-300</u>)
- Application Brief: HiFiViral Full-Viral Genome Sequencing Best practices (102-193-692)
- Application Note: HiFiViral Full-Viral Genome Sequencing (102-194-700) [Coming Soon]
- Technical overview: Multiplexed library preparation for full-viral genome sequencing using HiFiViral SARS-CoV-2 kit (<u>102-399-300</u>)

FAQ

HiFiViral SARS-CoV-2 Kit FAQ [Link]

Visit PacBio's <u>HiFiViral COVID-19 surveillance</u> website for HiFiViral SARS-CoV-2 workflow updates and other resources

PacBio HiFiViral SARS-CoV-2 Kit Product Overview Video (2021) [Link]

Technical resources for SARS-CoV-2 library preparation, sequencing & data analysis (cont.)

Posters, videos & webinars

- PacBio HiFiViral SARS-CoV-2 Kit Product Overview Video (2021) [Link]
- SFAF Poster (2021): HiFiViral SARS-CoV-2: A kitted solution for genome surveillance that is robust across sample input quantities and new variants [Link]
- ASHG Webinar (2021): HiFiViral SARS-CoV-2 Kit: A differentiate solution for surveillance by sequencing [Link]

Example PacBio data sets

Viral sequencing application	Dataset	Data type	PacBio system
SARS-CoV-2 surveillance	Omicron samples	HiFi Reads	Sequel II System
SARS-CoV-2 surveillance	Synthetic RNA controls	HiFi Reads	Sequel II System
SARS-CoV-2 surveillance	Surveillance samples	HiFi Reads	Sequel II System

Technical resources for SARS-CoV-2 library preparation, sequencing & data analysis (cont.)

Posters, videos & webinars

- PacBio HiFiViral SARS-CoV-2 Kit Product Overview Video (2021) [Link]
- SFAF Poster (2021): HiFiViral SARS-CoV-2: A kitted solution for genome surveillance that is robust across sample input quantities and new variants [<u>Link</u>]
- ASHG Webinar (2021): HiFiViral SARS-CoV-2 Kit: A differentiate solution for surveillance by sequencing [Link]

Ordering Information

Consumable product	Part number
HiFiViral SARS-CoV-2 kit (384 rxn)	102-132-000
SMRTbell prep kit 3.0 (24 rxn)	102-182-700
SMRT Cell 8M tray	101-389-001
Sequel II binding kit 3.1 & cleanup beads (24 rxn)	102-333-400
Sequel II sequencing kit 2.0 (4 rxn)	101-820-200

APPENDIX 1: RNA isolation kit options for full-viral genome sequencing of SARS-CoV-2

RNA sample extraction kit options for full-viral genome sequencing of SARS-CoV-2

Note: The products below have <u>not</u> been tested or validated by PacBio but are listed here as examples of third-party kits used by other PacBio customers for isolating SARS-CoV-2 RNA samples for multiplexed SMRTbell library preparation

Vendor	RNA isolation kit product	Supported automation platform
Thermo Fisher Scientific	MagMAX Viral/Pathogen II (MVP II) Nucleic Acid Isolation Kit [Link]	KingFisher Flex System
Roche Molecular Systems	MagNA Pure 96 DNA and Viral NA Small Volume Kit [<u>Link</u>]	Roche MagNA Pure-96 (MP6)

• Notes:

- PacBio users have generally reported good success when using the MagMAX Viral/Pathogen II (MVP II) Nucleic Acid Isolation Kit [Link] for extracting RNA samples for the HiFiViral SARS-CoV-2 sample preparation workflow
- Other PacBio users have reported poor results when using the Perkin Elmer chemagic Viral DNA/RNA 300 Kit H96 [<u>Link</u>] for extracting RNA samples for the HiFiViral SARS-CoV-2 sample preparation workflow – thus, this chemagic kit product should be avoided when preparing HiFiViral SARS-CoV-2 samples for SMRT sequencing
- Superior performance of the HiFiViral SARS-CoV-2 workflow is typically observed for samples obtained from nasopharyngeal extracts
- Suboptimal performance has been reported by PacBio users for samples obtained from saliva extracts
- The HiFiViral SARS-CoV-2 workflow is not recommended for analysis of wastewater samples and may lead to failure to produce any high-quality data

APPENDIX 2: Guidance on workflow automation for multiplexed library SARS-CoV-2 library preparation

Workflow automation options for high-throughput multiplexed HiFiViral SARS-CoV-2 sample preparation

Interested in automating your HiFiViral SARS-CoV-2 sample preparation workflow to achieve higher throughput? Please <u>contact</u> PacBio Support or your local Field Applications Scientist to discuss your needs.

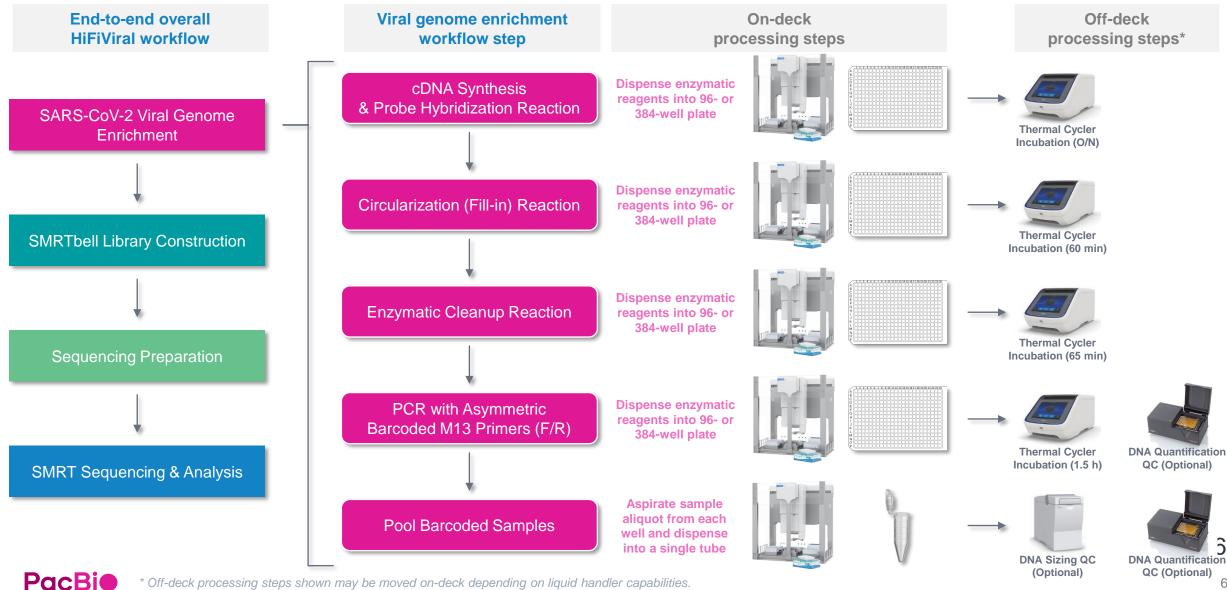
Bravo liquid handler (Agilent)

Sciclone G3 / Zephyr G3 NGS workstations (Perkin Elmer)

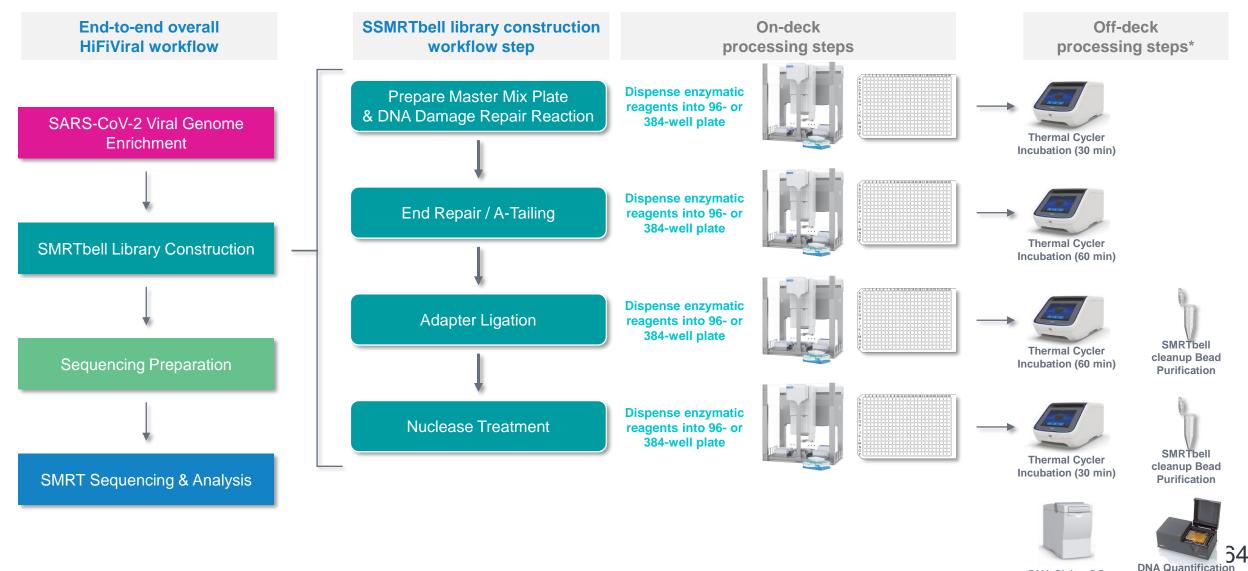
Biomek 4000 workstation (Beckman Coulter)

Microlab VANTAGE liquid handler (Hamilton)

Dragonfly discovery (SPT Labtech)



Infinite F-series plate reader (Tecan)


Key Considerations for Workflow Automation

- Liquid handler capabilities, including:
 - Small volume (≥2 µL) and large volume (≥200 µL) transfers
 - Magnetic plate blocks for bead-based purification and buffer exchanges
 - Integrated heating / cooling temperature control
- Microplate reader for high-throughput DNA concentration QC

Recommended steps to automate for viral genome enrichment workflow using HiFiViral SARS-CoV-2 kit

Recommended steps to automate for HiFiViral SARS-CoV-2 SMRTbell library construction workflow using SMRTbell prep kit 3.0

* Off-deck processing steps shown may be moved on-deck depending on liquid handler capabilities.

PacBi

QC

PacBio

www.pacb.com

Research use only. Not for use in diagnostic procedures. © 2022, PacBio. All rights reserved. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omnione, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, and SBB are trademarks of Pacific Biosciences of California, Inc. (PacBio). All other trademarks are the sole property of their respective owners.