

Targeting clinically significant dark regions of the human genome with high-accuracy, long-read sequencing

I. McLaughlin¹, J. Harting¹, Z. Kronenberg¹, Lori Aro¹, C. Heiner¹ ¹Pacific Biosciences, Menlo Park, CA, USA

INTRODUCTION

There are many clinically important genes in "dark" regions of the human genome characterized by a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping is attributable to segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions.

Figure 1. PCR target maps for *CYP21A2* (A) and *GBA* (B)

screening assays. Each "dark" gene is difficult to accurately type with short-read sequencing due to proximity to and interaction with a highly homologous pseudogene. Inverted repeat regions in *GBA* pose additional target enrichment and analysis challenges.

A CYP21A2 Screening Assay

ארכן כל ארכן כל ארכין כל ארכי

METHODS

Long-range PCR targeted enrichment was combined with PacBio long-read, high-accuracy (HiFi) sequencing and a novel amplicon analysis tool (pbaa) to develop individual prototype screening assays for *CYP21A2* and *GBA*: genes associated with congenital adrenal hyperplasia and Gaucher disease, respectively.

Gene/Pseudogene Co-amplification (3 or 6 hr)	 Platinum SuperFi II PCR Master Mix (Thermo Fisher Scientific) plus 0.8M betaine Barcoded primers paired asymmetrically 7 Coriell samples amplified in replicate for <i>CYP21A2</i> and <i>CYP21A1P</i> for 24 samples total 13 Coriell samples amplified in replicate for <i>GBA</i> and <i>GBAP1</i> for 24 samples total 2-step cycling protocol: 2hr 41min for <i>CYP21A2</i> assay; 6hr 10min for <i>GBA</i> assay 50 ng sample input 	Figure 2. Workflow for CYP21A2 and GBA screening assays. Two days are required starting from purified gDNA to have sequencing complexes ready to sequence. An additional two days are required to sequence the	
QC and Pool Samples (1 hr)	 <u>For each assay:</u> 24 samples quantified and pooled by equal mass Pooled samples AMPure PB bead-purified with 0.45X bead-to-sample volume ratio Pooled samples quantified (1X dsDNA HS Assay Kit [Thermo Fisher Scientific]) 	libraries and produce variant-typed results. Please see e-poster P17.028.C, <u>Resolving complex</u> pathogenic alleles using HiFi long- range amplicon data and a new clustering algorithm for additional	
SMRTbell Library Construction (3.5 hr)	 <u>For each library:</u> <u>SMRTbell Express Template Prep Kit 2.0 (PacBio) using overhang adapters</u> <u>1,000 ng pooled sample input</u> <u>2 separate libraries produced: one for CYP21A2 screening assay and one for GBA screening assay</u> <u>Libraries AMPure PB bead-purified two times with 0.45X bead-to-sample volume ratio</u> 	information on variant detection for these samples and the new amplicon analysis algorithm, pbaa).	
Sequencing Preparation (3 hr)	 <u>For each sequencing complex:</u> Sequencing Primer v4 (PacBio; 20-fold excess over template concentration) Sequel II Binding Kit 2.0 (PacBio; 10-fold polymerase excess over template concentration) 20-hr movie time on Sequel II System (also compatible with Sequel IIe System) 		

לא לאיני כו ארה, כו איר איר איר או 🗗

RESULTS

Table 1. Top-line performance metrics for CYP21A2 and GBA screening

assays. A high percentage of HiFi reads are barcoded and produce full-length alignments to the target genes.

Assay	PCR Input	PCR Yield (mean)	Library Input	Library Yield	HiFi Reads (≥Q20)	%Barcoded HiFi Reads	%Full-length Aligned Reads
CYP21A2	50 ng	431 ± 131 ng	1 µg	671 ng	1,520,782	84% (1,279,425)	84% (1,276,879)
GBA	50 ng	1,086 ± 304 ng	1 µg	673 ng	1,045,191	77% (801,843)	81% (847, 538)

 Table 2. Mean number of aligned reads for each target gene. The difference

 in yield between target genes in each assay reflects known PCR yield

 differences. The high CV level reflects the presence of samples with alleles

 containing deletions, reducing the number of reads for those samples.

Gene	Aligned Reads (mean)	с٧	Min	Max
CYP21A1P	17,226	71%	526	41,817
CYP21A2	27,471	41%	985	45,696
GBAP1	8,065	51%	3,866	21,355
GBA	22,165	23%	10,341	31,652

Table 3. Mean number of aligned reads for each sample in CYP21A2 (A) and GBA (B) screening assays. Highlighted values in purple indicate numbers significantly different than others within their respective columns. *CYP21A2* samples 12217, 14732, 14733, and 14734 contain *CYP21A2* deletion alleles which alter the number of expected reads for gene and pseudogene (e.g., sample 14734 contains a full deletion and partial deletion of *CYP21A2*, forming fusion alleles between *CYP21A1P* and partial *CYP21A2* or sequence downstream of *CYP21A2*). *GBA* samples 08752 and 08753 contain *GBA* deletion alleles but due to the priming strategy the resulting fusion product requires detection with the outer-most primers, LU3 and RD2. For each assay, the presence of a

Α	Expected Gene Amplification:				
	CYP2	1A1P	CYP21A2		
Comula	Observed Gene Alignment:				
Sample	CYP21A1P	CYP21A2	CYP21A1P	CYP21A2	
02241	15,053	326	161	38,273	
02242	17,805	378	116	37,845	
11781	33,738	168	313	30,757	
12217	27,662	73	16,414	17,085	
14732	895	411	20,927	20,728	
14733	14,989	353	22,491	22,168	
14734	870	1	46,529	27	

low number of mismatched aligned reads to expected amplicons is due to the high level of homology between gene and pseudogene target regions.

PACBIO*

B Sample		Expected Gene Amplification: GBAP1		GBA		Outer Primers LU3-RD2	
		Observed Gene Al GBAP1	ignment: <i>GBA</i>	GBAP1	GBA	GBAP1	GBA
00	0852	9,360	1	6	28,984	147	175
00	0877	6,145	9	16	23,416	474	453
00	0878	4,939	18	54	22,317	908	991
01	1031	5,324	20	33	25,102	706	699
01	1260	6,938	18	18	20,358	443	492
01	1607	5,805	10	30	24,768	815	921
02	2627	8,569	5	13	27,590	475	318
08	3752	5,839	8	50	19,438	20,249	20,260
08	3753	5,279	32	142	12,894	11,717	11,784
10	0873	7,119	13	31	21,249	865	961
10	0874	8,247	2	9	26,519	297	356
20	0270	10,090	4	5	24,745	0	0
20	0273	4,667	2	25	26,531	724	809

RESULTS

Figure 3. **Detection of deletion alleles, gene fusions, and an SNV in related GBA compound heterozygote samples 08752 and 08753.** The deletions and gene fusions were not described in the Coriell database, only the L444P pathogenic variant. Primers are identified at the ends of each aligned read, and the L444P mutation is indicated with a red arrow. The fusion allele is created by a large deletion encompassing *GBA* and *GBAP1* genes.

ליכן כל יכן 😥 PACBIO*

CONCLUSIONS

- > We demonstrate that HiFi sequencing provides new opportunities for sequencing clinically relevant but previously dark regions of the human genome that are underrepresented in short-read sequencing.
- The CYP21A2 and GBA screening assays achieved accurate typing results for all samples and provided additional variant information due to the use of optimized and robust long-range PCR enrichment, HiFi sequencing, and newly developed PacBio amplicon analysis tool, pbaa.
- > Accurate long reads provide important phasing information, identify structural variations, and avoid potential confusion with pseudogenes.
- > The PCR, library preparation, and sequencing preparation steps of these assays are amenable to automation and a costeffective workflow enabling high-throughput screening.
- HiFi sequencing of these regions enables a better understanding of the relationship between genetic factors and personal health and has the potential to ultimately help guide health-related decisions.