ACBIO[®]

A Method for the Identification of Variants in Alzheimer's Disease Candidate Genes and Transcripts Using Hybridization Capture Combined with Long-Read Sequencing

Steve Kujawa¹, Jenny Ekholm¹, Kevin Eng¹, Ting Hon¹, Elizabeth Tseng¹, Aaron Wenger¹, Kristina Giorda², Jiashi Wang² & Mirna Jarosz² ¹PacBio, 1305 O'Brien Drive, Menlo Park, CA 94025 ²Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241

Introduction	Res	ults - Genes		45,300 kb 45,300 kb 45,300 kb 46,000 kb 46,000 kb 46,000 kb P-cal - - - - - - 1:A Phase 1 (5 isoforms) - - - - -
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes that cause early-onset AD,	Reads from the gDNA from Survey reference genome using NGM called using PBHoney Spots (-LR. Structural var		110 Phase 2 (21 isoforms)
these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20		# Events	# Unique Genes	Image: second secon
additional genetic risk loci for the more common form of late-onset AD.	Deletions >50 bp	15	10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
However, the identified SNPs are typically not the actual risk variants,	Incertions >50 hn	16	Q	Figure 5. Haplotyped MAPT transcripts from Subject 1. Heterozygous SNPs can be

Figure 5. Haplotyped MAPT transcripts from Subject 1. Heterozygous SNPs can be

but are in linkage disequilibrium with the presumed causative variants¹.

Long-read sequencing together with hybrid-capture targeting technologies provides a powerful combination to target candidate genes/transcripts of interest. Here we present a method for capturing genomic DNA (gDNA) and cDNA from two AD subjects using a panel of probes targeting 35 AD candidate genes. By combining xGen[®] Lockdown[®] probes with SMRT Sequencing, we provide completely sequenced candidate genes as well as their corresponding full-length transcripts. Furthermore, we are able to take advantage of heterozygous variants to phase the genes and their corresponding transcript isoforms into their respective haplotypes.

Materials and Methods

A custom panel of 35 AD genes (Table 1) was designed using IDT xGen Lockdown probes. Probes were placed approximately every 1 kb (Figure 1) and designed to cover the entire gene (exons, introns and regulatory regions).

	Genes Included in the Panel										
ABCA7	APH1	APOE	APP	BACE1							

Insertions >50 bp

16

8

Table 3. SVs >50 bp Observed in the 35 AD Genes from Subjects 1 & 2. 31 unique SVs were observed, ranging in size from 65 bp to multiple kilobases.

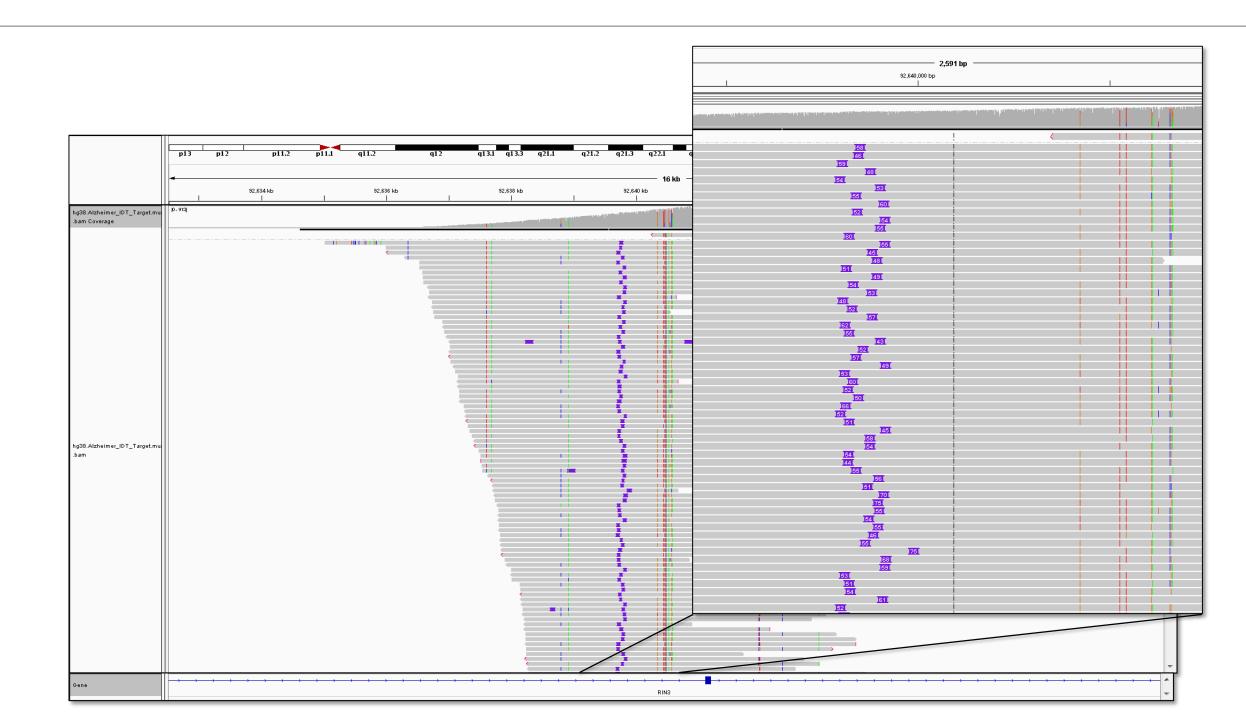
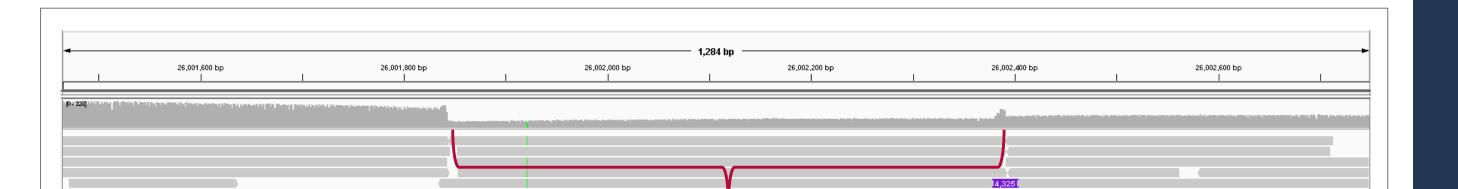
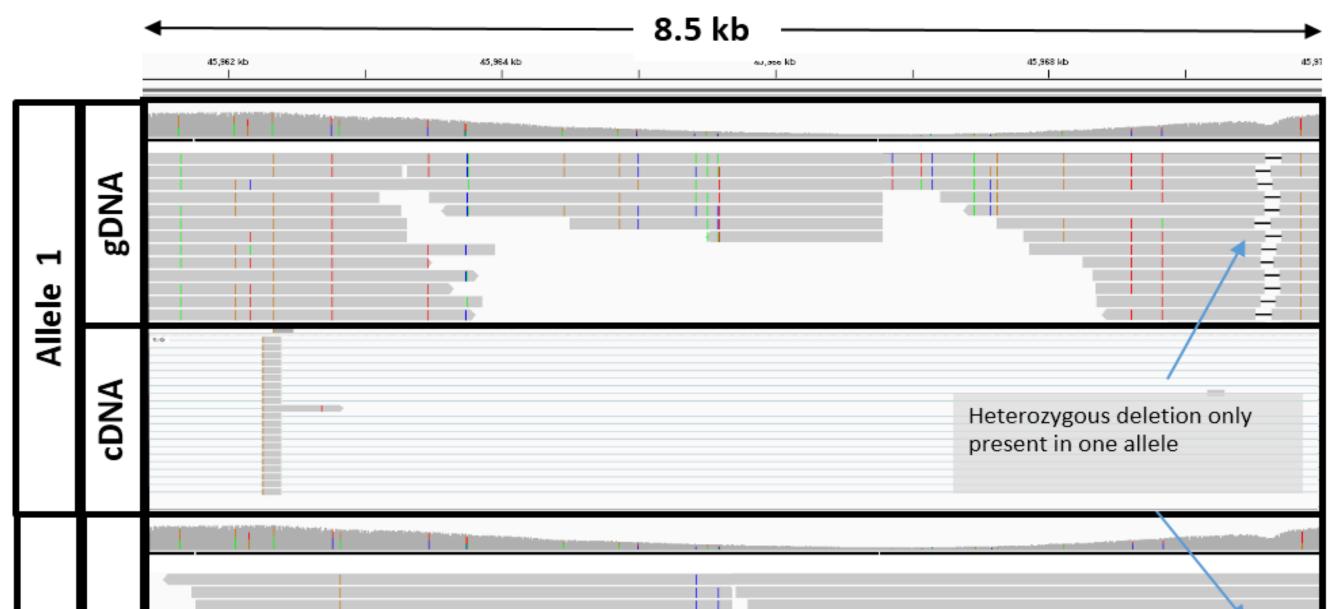



Figure 2. gDNA of RIN3 gene from Subject 2. Approximately 50 bp insertion (purple bars) found in intron 4 of the RIN3 gene.



~550 bp inversion

used to haplotype the transcripts. A novel exon (red arrows) was observed in three of the five isoforms in Phase 1 and not observed in any of the 21 isoforms in Phase 2.

Results – Haplotyped Variants

After alignment to the hg38 genome, heterozygous variants can be used to further assign the gDNA and transcripts to their appropriate haplotype. As the average fragment size of the captured gDNA is ~6 kb, it is possible to phase regions that are multiple, tens of kilobases in length. Full-length transcripts are easily phased if a heterozygous SNP is captured in an exon or retained intron.

BIN1	BSG	CASS4	CD2AP	CD33
CELF1	CLU	CR1	EPHA1	FERMT2
GRN	HLA-DRB1	HLA-DRB5	INPP5D	MAPT
MEF2C-AS1	MS4A6A	NCSTN	NME8	PICALM
PSEN1	PSEN2	PTK2B	RIN3	SLC24A4
SNCA	SORL1	TOMM40	TREM2	ZCWPW1

Table 1. The custom AD panel includes 35 genes.

								91 kb								
1	73,610 kb	I	73,620 kb	I.	73,630 kb		73,640 kb	I	73,650 kb	73,6	60 kb	73,670 kb		73,680 kb	1	73,690 I
I	I	1	I	1	I	I	I	I			1	1	1		1	
$\mapsto \rightarrow \rightarrow$	· · · ·	→ ∥ → →		, ,	, , ,						$\rightarrow \rightarrow \rightarrow +$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	→	· · · · · · ·		
								PSEN1								
		1 11 1 1		1.1.1		1.1.1	1.1.11		11 11		1 111	11 111				

Figure 1. Probe design for *PSEN1*. 77 probes were evenly spaced across the ~90 kb gene.

Two subjects were sequenced during this experiment (Table 2). For each subject, gDNA was captured with the custom AD panel according to the published protocol² and sequenced on eight PacBio RS II SMRT Cells. Separately, for each subject, RNA was converted to cDNA, captured with the custom AD panel according to the published protocol³ and sequenced on four PacBio RS II SMRT Cells.

Figure 3. gDNA of APP gene from Subject 1. Approximately 550 bp inversion in intron 6 of the APP gene.

Results - Transcripts

The captured cDNA from Subjects 1 and 2 were run through the Iso-Seq (ToFU) bioinformatics pipeline to obtain Quiver-polished, full-length, high-quality transcript sequences. Sequences were then mapped to the hg38 genome and filtered with criteria: (1) alignment coverage $\geq 99\%$; (2) alignment identity \geq 95; (3) at least 5 FL read support; (4) is not a 5' degraded product; and (5) overlaps the probe target region. This resulted in a total of 515 isoforms from Subject 1 and 507 isoforms from Subject 2. To compare with existing annotation, we selected all Gencode v25 transcripts from the target genes with an annotated transcript support level of 1 (most reliable annotation, all junctions supported by at least one mRNA evidence), resulting in 111 isoforms.

Allele 2	gDNA		
	cDNA	3/5 isoforms for allele 2 have a novel exon	

Figure 6. Phased Genes & Transcripts of MAPT from Subject 1. Heterozygous SNPs can be used to phase the genomic DNA and transcripts to their appropriate haplotype. Once phased, variants such as this 100 bp heterozygous deletion (blue arrows upper right) can be studied to better understand their potential impact on transcript isoform production. Five unique isoforms were observed from allele 2. Three of these isoforms contained a novel exon (blue arrows lower left) that was only present in allele 2. These exons were flanked by the canonical "AG" and "GT" splice sites in the gDNA.

Conclusion

Combining xGen Lockdown probes with SMRT Sequencing provides a method for completely sequenced candidate genes and their corresponding full-length transcripts.

This method enables:

- Detection of a broad range of genomic variants, from SNPs to multikilobase insertions and deletions
- Detection of novel transcript isoforms, including novel exons

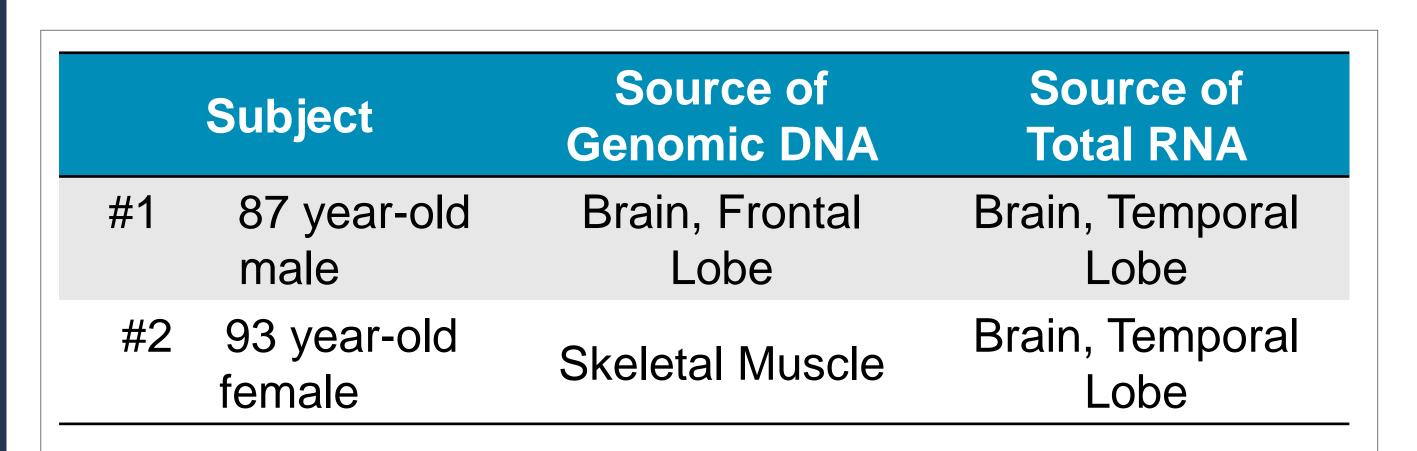


Table 2. gDNA and total RNA from two AD subjects were purchased from **BioChain Institute**, Inc.

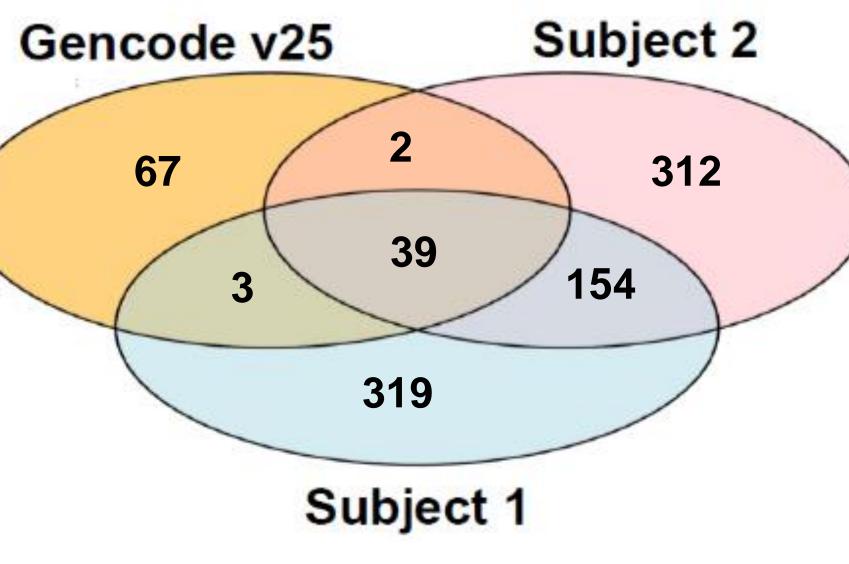


Figure 4. Comparison of isoforms observed in Subjects 1 & 2 with Level 1 isoforms in Gencode v25.

Assignment of variants and transcripts isoforms to their specific alleles

1. Van Cauwenberghe C, et al. (2015). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med, 18(5), 421-430.

- 2. <u>Target Sequence Capture Using IDT Library with PacBio[®] Barcoded Adapters</u>
- 3. Full-length cDNA Target Sequence Capture Using IDT xGen® Lockdown® Probes

Acknowledgements

The authors would like to thank everyone who helped generate data for the poster.

For Research Use Only. Not for use in diagnostics procedures. © Copyright 2017 by Pacific Biosciences of California, Inc. All rights reserved. Pacific Biosciences of California, Inc. All rights reserved. Pacific Biosciences of California, Inc. All rights reserved. BluePippin and SageELF are trademarks of Sage Science. NGS-go and NGSengine are trademarks of GenDx. FEMTO Pulse and Fragment Analyzer are trademarks of Advanced Analytical Technologies. All other trademarks are the sole property of their respective owners.