Beyond Contiguity: Evaluating the Accuracy of de novo Genome Assemblies

HiFi READ	LONG READ				
Read Type	HiFi Read	Long Read			
Length (kb)	10-25	20-40			
Quality	>Q20	>Q8			
Error Rate	<1%	10-15%			
Abstract					

PACBIO®

- Common methods for assessing *de novo* assembly quality (BUSCO, contig N50) are incomplete measures of accuracy.
- Estimates of assembly base accuracy are limited by the quality of the reference to which it is compared (Fig. 1).
- For the human genome, Genome in a Bottle provides a benchmark with estimated accuracy of 99.9999% (Q60).
- We generated benchmarks of high confidence reference regions for two model species: rice and Drosophila.
- Our method uses PacBio HiFi reads and Illumina data to annotate biological variation in the sample and mask low confidence regions in the reference.

2. Overall Base Quality

 Concordance to a generic reference measures sample biological divergence. A sample-specific benchmark measures assembly quality.

> **Full Reference Benchmark**

HiFi Reads

Q41 20 30

Long Reads

3. Gene Completeness

Specifies-specific gene sets distinguish assemblies that look equivalent in BUSCO.

Species-specific	N = 19	,313	N = 3	5,666	N = 1	3,947
In Frame	99.5 %	96.4 %	98.5 %	98.6 %	99.5%	98.6%
BUSCO Conserved	N = 4,	,104	N = 1	1,440	N = 2	2,799
Complete	94.9 %	94.8%	98.7%	98.7%	98.9 %	98.8 %
4. Contig Stats						
Contig N50 (Mb)	30.5	12.6	10.7	11.2	14.4	6.64
Length (Gb)	2.92	2.85	0.400	0.404	0.150	0.148

HiFi Reads

Q50

Q31

Long Reads

Q30

Q47

HiFi Reads

Q26 **Q**13 **Q50** O44

HiFi Reads

PacBio HiFi assemblies can achieve base pair accuracy of Q50, or <1 error per 100 kb.

Datasets and Methods

Sample	Human HG002	Rice <i>Oryza sativa</i> MH63	Drosophila <i>D. melanogaster</i> A4xISO1 Females
HiFi Reads	20-fold 15 kb	20-fold 17 kb	38-fold 19 kb
Long Reads	50-fold >15 kb	60-fold >30 kb	70-fold >15 kb

de novo Assembly Methods:

-FALCON (pb-assembly v0.0.4 or later) -Polishing with Racon v1.4.10 (HiFi data) or gcpp v1.0.0 (long reads) -Drosophila data trio binned before assembly with Canu v1.5

Sequence data available in GenBank:

HiFi data: PRJNA573706; Long Read Rice: PRJNA558396; Long Read Human: PRJNA558394; Long Read Drosophila: PRJNA558397

Reference Genomes:

Human: hs37d5/GRCh37 Rice: Zhang, J., Chen, L., Sun, S. *et al. Sci Data* **3**, 160076 (2016) Drosophila: dmel r6.28 FB2019 03

Software:

pb-assembly and pbsv: https://github.com/PacificBiosciences/pbbioconda racon: https://github.com/lbcb-sci/racon bwa: https://github.com/lh3/bwa minimap2: https://github.com/lh3/minimap2 mosdepth: https://github.com/brentp/mosdepth freebayes: https://github.com/ekg/freebayes Manta: https://github.com/Illumina/manta bedtools: https://github.com/arq5x/bedtools BUSCO3: https://busco-archive.ezlab.org/v3/ canu: https://github.com/marbl/canu

Building a Benchmark of High-Quality Reference Regions

- Concordance between a *de novo* assembly and a reference genome can approximate assembly quality.
- Discordances can be:
 - 1. Errors in assembly
 - 2. Errors in reference
 - 3. Biological differences
- Defining a benchmark of high quality regions of a reference allow the estimation of assembly errors.

Figure 1. Concordance as a Function of Reference and Assembly Quality

1. Mask Low Confidence Regions

Map: bwa (ILM) or minimap2 (HiFi) **Depth:** mosdepth in 100 bp windows

"Normal" Cov: mode $+/- 3 * \sqrt{\text{(mode)}}$

Mask regions with >10 clipped reads

2. Call Variants against Reference

SNV: Freebayes with PE ILM +/- 5 bp slop

Acknowledgements

The authors would like to thank J. J. Emerson, Mahul Chakraborty, Rod Wing, Ivan Sović, Kristin Robertshaw, Pamela Bentley Mills, Greg Concepcion, Chris Dunn, Jim Drake, Rob Grothe, Jonas Korlach, Michelle Vierra, Greg Young, Christine Lambert, Primo Baybayan, and Alicia Yang.

SV: Manta with PE ILM +/- 50 bp slop PBSV with HiFi +/- 50 bp slop

3. Measure Concordance with Reference

- Assembly mapped to reference in 100 kb windows (minimap2 -x asm5)

- Concordance = matches/(high qual bases) - Q = -10 * log10 (1-concordance)- max(Q) in 100 kb window = 50

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2020 by Pacific Biosciences, the Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of Pacific Biosciences. BluePippin and SageELF are trademarks of Sage Science. NGS-go and NGSengine are trademarks of Agilent Technologies Inc. All other trademarks are the sole property of their respective owners.