de novo Genome Assemblies

Sarah B. Kingan, Zev N. Kronenberg, Aaron M. Wenger
PacBio, 1305 O'Brien Drive, Menlo Park, CA 94025

PacBio Data Types

HiFi Reads
High accuracy consensus read of library insert

- Common methods for assessing de novo assembly quality (BUSCO, contig N50) are incomplete measures of accuracy.
- Estimates of assembly base accuracy are limited by the quality of the reference to which it is compared (Fig. 1).
For the human genome, Genome in a Bottle provides a benchmark with estimated accuracy of 99.9999\% (Q60).
- We generated benchmarks of high confidence reference regions for two model species: rice and Drosophila.
- Our method uses PacBio HiFi reads and Illumina data to annotate biological variation in the sample and mask low confidence regions in the reference.
PacBio HiFi assemblies can achieve base pair accuracy of Q50, or <1 error per 100 kb .

Datasets and Methods

Sample	$\begin{aligned} & \text { Human } \\ & \text { HG002 } \end{aligned}$	Rice Oryza sativa MH63	Drosophila D. melanogaster A4xISO1 Females
HiFi Reads	20 -fold 15 kb	20 -fold 17 kb	38 -fold 19 kb
Long Reads	-fold > 15 k	>30	70 -fold >15 kb
de novo Assembly Methods: -FALCON (pb-assembly v0.0.4 or later) -Polishing with Racon v1.4.10 (HiFi data) or gcpp v1.0.0 (long reads) -Drosophila data trio binned before assembly with Canu v1.5			
Sequence data available in GenBank: HiFi data: PRJNA573706; Long Read Rice: PRJNA558396; Long Read Human: PRJNA558394; Long Read Drosophila: PRJNA558397			
Reference Genomes: Human: hs37d5/GRCh37 Rice: Zhang, J., Chen, L., Sun, S. et al. Sci Data 3, 160076 (2016) Drosophila: dmel_r6.28_FB2019_03			
Software: pb-assembly and pbsv: https://github.com/PacificBiosciences/pbbioconda racon: https://github.com/lbcb-sci/racon bwa: https://github.com/lh3/bwa minimap2: https://github.com/lh3/minimap2 mosdepth: https://github.com/brentp/mosdepth freebayes: https://github.com/ekg/freebayes Manta: https://github.com/lllumina/manta bedtools: https://github.com/arq5x/bedtools BUSCO3: https://busco-archive.ezlab.org/v3/ canu: https://github.com/marbl/canu			

Acknowledgements

The authors would like to thank J. J. Emerson, Mahul Chakraborty, Rod Wing, Ivan Sović, Kristin Robertshaw, Pamela Bentley Mills, Greg Concepcion, Chris Dunn, Jim Drake, Rob Grothe, Jonas Korlach, Michelle Vierra, Greg Young, Christine Lambert, Primo Baybayan, and Alicia Yang

Summary of Assembly Quality

1. Contig Base Pair

Accuracy

- Measured in 100 kb windows
- Percentage of reference
in benchmark:
- Human: 82\%
- Rice: 61\%
- Drosophila: 52\%

Rice

2. Overall Base Quality

- Concordance to a generic reference measures sample biological divergence.

A sample-specific benchmark measures assembly quality.

Full Reference	Q24		Q24	Q31	Q30
Benchmark	Q49	Q41	Q50	Q47	

3. Gene Completeness

- Specifies-specific gene sets distinguish assemblies that look equivalent in BUSCO.

Species-specific	$N=19,313$		$N=35,666$		$N=13,947$	
In Frame	99.5 \%	96.4 \%	98.5 \%	98.6 \%	99.5\%	98.6\%
BUSCO Conserved	$N=4,104$		$N=1,440$		$\mathrm{N}=2,799$	
Complete	94.9 \%	94.8\%	98.7\%	98.7\%	98.9 \%	98.8 \%
ontig Stats						
Contig N 50 (Mb)	30.5	12.6	10.7	11.2	14.4	6.64
Length (Gb)	2.92	2.85	0.400	0.404	0.150	0.148

Building a Benchmark of High-Quality Reference Regions

- Concordance between a de novo assembly and a reference genome can approximate assembly quality.
- Discordances can be:

1. Errors in assembly
2. Errors in reference
3. Biological differences

- Defining a benchmark of high quality regions of a reference allow the estimation of assembly errors.

Figure 1. Concordance as a Function of Reference and Assembly Quality

1. Mask Low Confidence Regions

Map: bwa (ILM) or minimap2 (HiFi) Depth: mosdepth in 100 bp windows
"Normal" Cov: mode +/- 3*V(mode)

Mask regions with >10 clipped reads

2. Call Variants against Reference

SNV: Freebayes with PE ILM +/- 5 bp slop SV: Manta with PE ILM +/- 50 bp slop PBSV with HiFi +/- 50 bp slop
3. Measure Concordance with Reference

Assembly mapped to reference in 100 kb windows (minimap2 -x asm5)
Concordance = matches/(high qual bases) $Q=-10$ * $\log 10(1-$ concordance $)$ $\max (Q)$ in 100 kb window $=50$

