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Background

«  The human mitochondria is a circular fragment of DNA that is approximately 16 kb long. Despite the
relatively short length, it contains over 30 genes, many of which are associated with human disease.

. Mitochondria have several genomic features that researchers are interested in identifying:
— Small variants: ~130 confirmed pathogenic mutations’
—  Structural variants: ~200 structural variants in the MITOMAP database’
— Heteroplasmy: Variants that are not present in all copies of the mitochondria
— NUMTs: Fragments of mitochondrial DNA that have been incorporated into the nuclear genome

. Long-read sequencing captures full-length mitochondrial DNA sequences?, enabling easier identification
of interesting genomic features.

Mitochondrial analysis of long-read sequencing with Mitorsaw

« Variant detection: Identifies SNVs, indels, and structural variants from HiFi sequencing,
reporting both homoplasmic and heteroplasmic variants with their observed allele fractions

. Haplotype analysis: |dentifies the full-length mitochondrial sequences from the HiFi reads

« Custom visualizations: Generates custom |GV sessions with re-alignments against cyclic
reference genome and consensus mitochondrial sequences

 Avoids pitfalls of mitochondrial analysis:
— Filters NUMTSs prior to variant calling, removing many false positives
— Re-maps reads to cyclic genome, recovering variants near the ends of the reference
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Figure 1. Example heteroplasmic deletion. This is a custom IGV session generated by Mitorsaw, where the HiFi reads have
been re-mapped to a cyclic version of the reference mitochondria (tracks “chrM _loop 0" and “chrM_loop_17). The
heteroplasmic deletion event is visually apparent in the second haplotype (Hap1) reported by Mitorsaw with several reads fully
spanning the deletion event.

Mitorsaw improves on DeepVariant mitochondrial calls Mitorsaw constructs heteroplasmic haplotypes
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Figure 2. HPRC dataset analysis. \We compared the variant calls from Mitorsaw (heteroplasmy-aware caller) and DeepVariant _ o Haplotype 1 chrM:11392A>G 27.1%
(diploid caller) for 152 HPRC samples sequenced with PacBio HiFi sequencing. For all shared variants, the zygosity of the call is chrM:4360G>A 15.6%
compared to determine if they are equivalent. Three datasets show elevated discordance, two of which are caused by Haplotype 2 chrM:16092T7>C 40.9%
heteroplasmy levels below the default cutoff (10%). The last is enriched for false positives from DeepVariant that are caused by chrM:11392A>G 43.5%
unfiltered reads from a NUMT event in the dataset. T . chrM:11392A>G + .
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- Figure 4. HG02300 Mitorsaw results. (A) An image of an IGV session created from Mitorsaw results. The reads are
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. « Creates custom visualizations for manual inspection https://github.com/PacificBiosciences/mitorsaw
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