

Full-length cDNA Sequencing of Alternatively Spliced Isoforms Provides Insight into Human Cancer

Tyson A. Clark, Ting Hon, and Elizabeth Tseng

Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025

Abstract

The majority of human genes are alternatively spliced, making it possible for most genes to generate multiple proteins. The process of alternative splicing is highly regulated in a developmental-stage and tissue-specific manner. Perturbations in the regulation of these events can lead to disease in humans. Alternative splicing has been shown to play a role in human cancer, muscular dystrophy. Alzheimer's, and many other diseases. Understanding these diseases requires knowing the full complement of mRNA isoforms. Microarrays and highthroughput cDNA sequencing have become highly successful tools for studying transcriptomes, however these technologies only provide small fragments of transcripts and building complete transcript isoforms has been very challenging.

We have developed a technique, called Iso-Seq sequencing, that is capable of sequencing full-length, single-molecule cDNA sequences. The method employs SMRT Sequencing from PacBio, which can sequence individual molecules with read lengths that average more than 10 kb and can reach as long as 40 kb. As most transcripts are from 1 - 10 kb, we can sequence through entire RNA molecules, requiring no fragmentation or post-sequencing assembly. Jointly with the sequencing method, we developed a computational pipeline that polishes these fulllength transcript sequences into high-quality, non-redundant transcript consensus sequences. Iso-Seq sequencing enables unambiguous identification of alternative splicing events, alternative transcriptional start and polyA sites, and transcripts from gene fusion events. Knowledge of the complete set of isoforms from a sample of interest is key for accurate quantification of isoform abundance when using any technology for transcriptome studies.

Here we characterize the full-length transcriptome of paired tumor/normal samples from breast cancer using deep Iso-Seq sequencing. We highlight numerous discoveries of novel alternatively spliced isoforms, gene-fusion events, and previously unannotated genes that will improve our understanding of human cancer.

Sample Preparation Methods

RNA is converted into first strand cDNA using the Clontech SMARTer PCR cDNA Synthesis Kit followed by universal amplification. Amplified cDNA is size into SMRTbell templates for sequencing on the PacBio RS II. size fractionated and conve

Size Fractionation of Iso-Seq Libraries

Alternative Splicing Events in Breast Cancer

several hundred kb up to more than 10 kb in size.

Examples of Full-Length Transcripts from Adjacent Breast Tumor and Normal Samples

Detection of Fusion Genes in Cancer

93 Gene Fusion Candidates Found in the MCF-7 Cancer Cell Line Iso-Seq Datasets (16 of them are previously known or predicted)

Gene 1	1	Gene 2	2	Support
ARFGEF2	chr20	SULF2	chr20	experimental
BCAS4	chr20	BCAS3	chr17	experimental
ESR1	chr6	CCDC170	chr6	experimental
FOXA1	chr14	TTC6	chr14	computational
MYH9	chr22	EIF3D	chr22	computational
MYO6	chr6	SENP6	chr6	experimental
PAPOLA	chr14	AK7	chr14	computational
POP1	chr8	MATN2	chr8	experimental
RPS6KB1	chr17	VMP1	chr17	experimental
RPS6KB1	chr17	DIAPH3	chr13	experimental
RSBN1	chr1	AP4B1	chr1	computational
SLC25A24	chr1	NBPF1	chr1	experimental
SYTL2	chr11	PICALM	chr11	experimental
TBL1XR1	chr3	RGS17	chr6	experimental
TXLNG	chrX	SYAP1	chrX	experimental
ZNF217	chr20	SULF2	chr20	computational

Table of known or predicted gene fusions that were detected in the MCF-7 dataset

fusion variants of the BCAS4/BCAS3 genes. All three variants contain a portion of the 5' region of the BCAS4 gene (chr20q13) and a portion of the 3' region of the BCAS3 gene (chr17q23).

Full-Length Human Tissue Transcriptomes

PacBio Sequencing of Iso-Seq Libraries From 3 Human Tissues

sizes and the number of isoforms per gene

Targeted Full-Length cDNA Sequencing

Sequencing of Full-Length RT-PCR Products Shows Differential

PacBio sequencing of full-length RT-PCR products simplifies identification of alternatively spliced isoforms and allows for relative quantification of isoform abundance

Summary and Resources

Summary:

- The Iso-Seq method provides full-length cDNA sequences without the need for assembly.
- Improved sample prep and size-selection methods allows for sequencing of transcripts up to 10 kb.
- Alternatively spliced transcripts can be easily identified from either whole transcriptome or targeted sequencing.

PacBio human three tissue dataset available here:

PacBio MCF-7 transcriptome dataset available here:

Additional information and Iso-Seq protocols

Details on data analysis of Iso-Seq data can be found here: