
Complex alternative splicing patterns in human hematopoietic cell 
subpopulations revealed by third-generation long reads

A. Deslattes Mays1, E. Tseng2, R. Sebra3, P. Baybayan2, M. Schmidt1, A. Wellstein1

1Department of Oncology and Medicine, Lombardi Cancer Center, Washington DC 20057  2Pacific Biosciences, Menlo Park, CA 94025 
3Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY 10029

Figure 1 – Alternative splicing, cancer progression and hematopoetic cell differentiation- A.
Alternative splicing discovered in the late 1970s1. Verified experimentally in the 1980s2. Real revolution 
came with the sequencing of the human genome3. Before the sequencing of the human genome –
estimates of gene counts in the human genome ranged from 20-100,000. Alternative splicing provides 
multiple transcript isoforms for the same transcript parts2.  B. Examples of cases where opposite function 
from a genes transcribed from the same genomic locus results in opposite function.  C.  Probing bone 
marrow hematopoiesis provides insight into cancer stem cells and their differentiating programs3.  Isolating 
the most undifferentiated cells from a healthy bone marrow cell population and measuring the structure 
and the abundance helps us to understand health which gives us insight into disease.  D. Hematopoetic 
cell lineage differentiation, focusing on the early upstream uncommitted cells.
1Gilbert, W.. “Why genes in pieces?  Nature 271, no 5645 (1978): 501
2Florea, L. "Bioinformatics of alternative splicing and its regulation." Briefings in Bioinfo. 7.1 (2006): 55-69.
3Bonnal, Sophie, Luisa Vigevani, and Juan Valcárcel. "The spliceosome as a target of novel antitumour 
drugs." Nature Reviews Drug Discovery 11.11 (2012): 847-859.
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Figure 2 – Lineage negative cells 
isolated through magnetic 
separation.  A. Discarded 
collection bone marrow bags 
obtained from Georgetown 
MedStar’s cell processing unit. B. 
Bone marrow transferred to 
SepMateTM- 50 ml tubes layered 
with Ficol and centrifuged 
obtaining bone marrow 
mononuclear cells (BMNCs).  C.
BMNCs purified with ammonium 
chloride. D. Lineage negative (Lin-
) isolated through magnetic 
separation using an antibody 
cocktail in tetrameric complex with 
EasySepTM magnetic 
nanoparticles. Resulting in 1-2% 
lineage negative (Lin-) cells 
separated from 98-99% lineage 
positive (Lin+) cells from initial total 
BMNC cell population.
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Figure 3 - Log read RNA-
Sequencing Workflow. PacBio 
transcript sequencing (Iso-Seq™), 
full-length cDNA synthesis from 
polyA RNA using the Clontech® 
SMARTer™ PCR cDNA Synthesis 
Kit; size selection of 1-2 kb, 2-3 kb, 
and 3-6 kb fractions: conversion to 
SMRTbell™ libraries. BluePippin™ 
size selection protocol includes 2 
amplification steps, before and after 
gel sizing.  Full-length cDNA 
libraries can be produced from 1 ng 
of poly(A) RNA, or 2 ng total RNA. 
The total time from input RNA to 
SMRTbell template library 
generation is 3 to 4 days
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Figure 4 – Using gene expression, hierarchical clustering segregates out (Lin-) from (Lin+) cell 
populations.  Agglomeration by Ward, Minkowski distance metric both genes and samples segregate 
(Lin-) and (Lin+) cell populations. Normalized by the total cell population, the top 50 genes sorted by 
expression clearly segregate the into two groups.  A represents those genes enriched in the (Lin+) cell 
population and B represents those cells enriched in the (Lin-) cell populations. 
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Figure 6 – Complex patterns transcript isoforms shown in (Lin-) and (Lin+) revealed through third 
generation sequencing. A. PRTN3, B. AZU1 and C. ELANE genes highly expressed in the (Lin-) cell 
population are co-linear on the genome.   AZU1, ELANE, PRTN3 and the CFD are often co-expressed 
and are under evolutionary pressure to remain heterozygous.  D. IL8 , E. MMP8 and F. MMP9 genes 
highly expressed in (Lin+) cell population.   The metal proteases, in particular MMP8 have been shown to 
play a role in IL-8 induced mobilization of hematopoietic progenitor cells from the bone marrow. 
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Figure 4 –Enrichment analysis – Parsing gene annotation information from over 1.5 million genes from 
more than 65,000 species, DAVID1,2  provides gene-annotation enrichment analysis.  Resulting gene 
ontologies and their associated p-values are provided to REVIGO3 for further enrichment analysis.  A. 
(Lin+) biological processes from top genes expressed relative to total and differentially expressed versus 
(Lin-).  B. (Lin-) biological processes from top gene expressed relative to total and differentially 
expressed versus (Lin-).1 Huang DW, Sherman BT, Lempicki RA. Nature Protoc. 2009;4(1):44-57.  
2Huang DW, Sherman BT, Lempicki RA. Nucleic Acids Res. 2009;37(1):1-13. 3Supek F, Bošnjak M, 
Škunca N, Šmuc T. - PLoS ONE 2011. doi:10.1371/journal.pone.0021800
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