MinHash for overlapping and assembly

Sergey Koren

SMRT® Informatics Developers Conference Gaithersburg, MD

August 26, 2015

Acknowledgement

This work was funded under Agreement No. HSHQDC-07-C-00020 awarded to Battelle National Biodefense Institute by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) for the management and operation of the National Biodefense Analysis and Countermeasures Center a Federally Funded Research and Development Center. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security or the U.S. Government. The Department of Homeland Security does not endorse any products or commercial services mentioned in this presentation.

S_1 :	CATGGACCGACCAG
	CAT GAC GAC
	ATG ACC ACC
	TGG CCG CCA
	GGA CGA CAG

[5, 1, 2, 15]

Sketch (S_1)

GCAGTACCGATCGT : S_2

GTA CGA CGT AGT CCG TCG CAG ACC ATC GCA TAC GAT

The "AltaVista" algorithm

Invented in 1998 by Andrei Broder to detect duplicate web pages

Applied to DNA sequencing matching and alignment

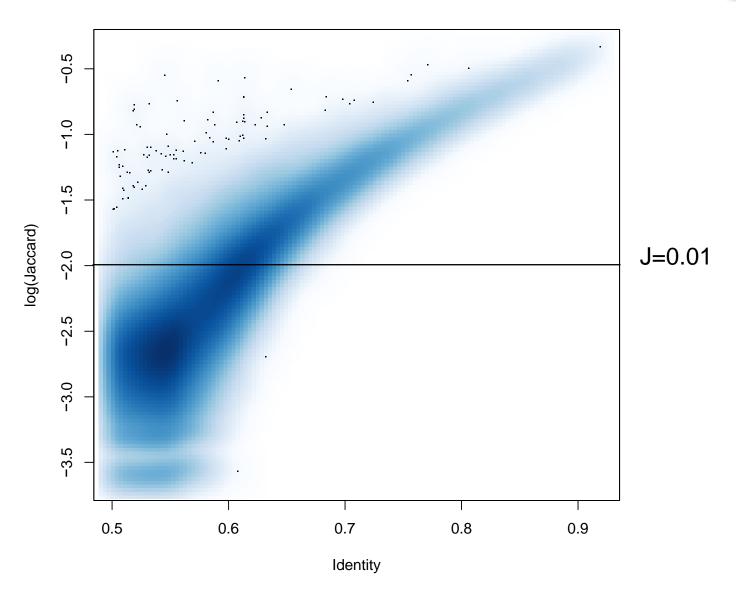
 Quick estimator of Jaccard Similarity

$$J(A,B) = \frac{|A \subsetneq B|}{|A \stackrel{\sim}{\vdash} B|} = \frac{4}{18} = 0.22$$

- $[\underline{5}, \underline{1}, 6, 6]$ $Sketch(S_2)$
- Position independent
- Length independent
- Correlated with identity

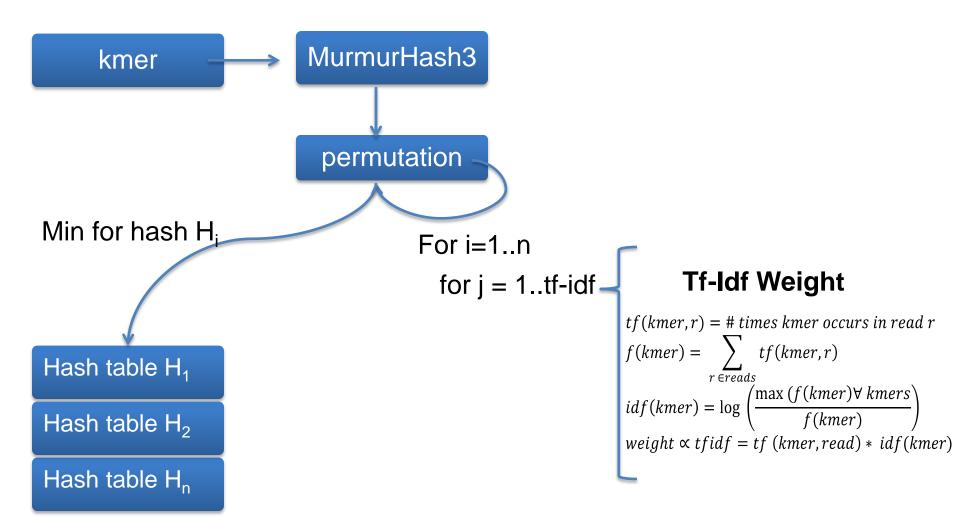
$\underline{\varGamma_1}$	Γ_2	Γ_3	Γ_4	(I	3)	$\underline{arGamma_1}$	Γ_2	Γ_3	Γ_4
19	14	57	36	CAT	GCA	36	19	14	57
14	57	36	19	ATG	CAG	18	13	56	39
58	37	16	15	TGG、	AGT	11	54	33	28
40	23	2	61	GGA ackslash	/ GTA	44	27	6	49
33	28	11	54	GAC \	/ TAC	49	44	27	6
5	48	47	26	ACC 🜙	ACC	5	48	47	26
22	1	60	43	CCG	CCG	22	1	60	43
24	7	50	45	CGA	CGA	24	7	50	45
33	28	11	54	GAC	GAT	35	30	9	52
5	48	47	26	ACC	ATC	13	56	39	18
20	3	62	41	CCA	TCG	54	33	28	11
18	13	56	39	CAG	CGT	27	6	49	44

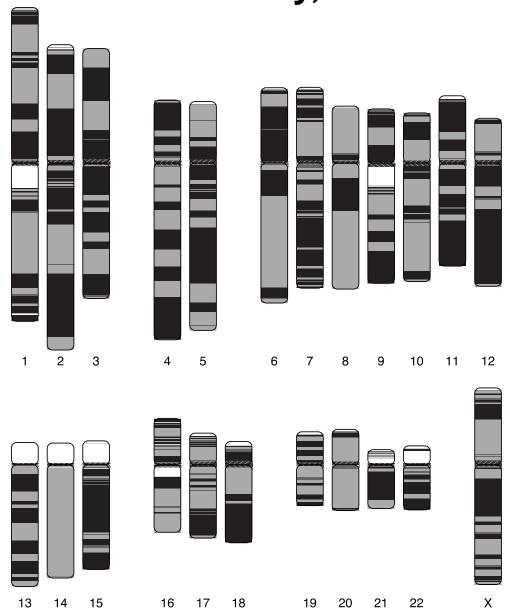
min-mers


(C)

(A)

- (D) $J(S_1, S_2) \approx 2/4 = 0.5$
- S_1 : CATGGACCGACCAG (E) S_2 : GCAGTACCGATCGT


Jaccard score estimates identity


In Practice, n hashes

Human Assembly, solved?

CHM13 CA 8.3

Acknowledgements

MHAP & Canu

- Adam Phillippy
- Konstantin Berlin
- Brian Walenz

Parsnp & Gingr

- Todd Treangen
- Brian Ondov

Mash

Brian Ondov

Or just Google "PBcR MHAP"

Join Phillippy Lab/MarBL at NIH

Looking for two postdocs, talk to myself or Adam

This Document was prepared for the Department of Homeland Security (DHS) by the Battelle National Biodefense Institute, LLC (BNBI) as part of contract HSHQDC-07-C-00020 to manage and operate the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center. In no event shall the DHS, BNBI or NBACC have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. In addition, no warranty of fitness for a particular purpose, merchantability, accuracy or adequacy is provided regarding the contents of this document.

Human Assemblies with MHAP

Genome	Chem	Cov	#Ctgs	Max (kb)	N50(kb)	Ovl CPU(h)
CHM1	P5	54X	17,776	35,487	6,303	19,700
CHM1	P5+P6	120X	8,011	143,469	23,254	26,305
CHM13	P5+P6	70X	15,538	81,523	13,332	8,171
Trio HG002	P5+P6	71X	13,048	35,012	4,399	9,145
Trio HG003	P5+P6	33X	23,493	9,815	912	30,625*
Trio HG004	P5+P6	29X	16.326	8.894	1.034	22.971*

^{*} Low coverage datasets run with sensitive parameters to improve assembly