PacBie

Ultra-high throughput multiomic analysis for agrigenomics on PacBio Revio system

Charlotte Harris², Renee Fedak¹, Jeffrey Burke¹, Victor Llaca², Gina Zastrow-Hayes², Kelvin Liu¹ 1. PacBio, 1305 O'Brien Drive, Menlo Park, CA 94025; 2. Corteva Agriscience, 8325 NW 62nd Ave, Johnston, IA 50131

Introduction

Climate change and the rapidly growing global population are increasingly straining world food production. Long-read sequencing is being used in large-scale

agricultural initiatives to help improve crop yields and combat pests and disease to meet increased agricultural demand.

The PacBio Revio system will enable researchers to meet the throughput demands for agrigenomics while maintaining best-in-class quality.

- **High throughput** \rightarrow 1,000s of plant genomes per year
- Low cost $\rightarrow \sim$ \$10/Gb
- **High quality** \rightarrow >90% of bases ≥Q30

High-throughput DNA extraction

DNA extraction was automated on the Kingfisher DNA purification systems with PacBio-developed DNA extraction reagents and protocols.

Sample	Input mass	DNA yield	DNA mode
уре	(mg)	(µg)	size (bp)

Automated library preparation and size-selection

Library preparation, utilizing the SMRTbell prep kit 3.0, was automated onto a Hamilton NGS star.

A new SMRTbell sizeselection wash was developed to improve removal of small fragments

PacBi

Sequencing on PacBio Revio system

Two maize lines were processed using the Corteva/PacBio high-throughput sample prep workflow and sequenced on the PacBio Revio system.

To complement the potential of Revio, a high-throughput end-to-end workflow was developed and validated.

Plant DNA extraction challenges

Extraction of high-quality DNA from plants is often timeconsuming and difficult, due to:

- Challenges with tissue and cell wall disruption
- Presence of nucleases, polysaccharides, and secondary metabolites
- Variable sample age and quality

Manual protocols typically utilize liquid nitrogen disruption, nuclei isolation, and CTAB precipitation which are not amenable to high-throughput applications.

High-throughput workflow

Corteva and PacBio collaborated to develop an end-toend workflow for generating and processing thousands of HiFi libraries per year for plants.

Corteva/PacBio high-throughput workflow

Maize	40	3.0–4.3	120,333
Soy	40	4.2–4.6	129,366
Pepper	50	3.7–4.4	151,137
Wheat	50	13.4–20.3	163,106
Cotton	40	0.6–3.6	120,509
Sorghum	40	0.9–2.0	131,253
Sunflower	40	0.9–2.1	127,224

Leaf tissue from several different plant types was disrupted using the SPEX Geno/Grinder and extracted using this protocol.

DNA mode size as measured by Femto Pulse is >100 kb for all plants — example electropherograms are shown below

Methods

- Disruption on SPEX Geno/Grinder
- Extraction on KingFisher Apex
- DNA shearing on Hamilton **NIMBUS**
- Library preparation with SMRTbell prep kit 3.0
- SMRTbell size-selection wash
- 24-hour sequencing movie

Sample	Mean HiFi read length (bp)	HiFi yield (Gb)	
Maize line 1	12,064	86.8	
Maize line 2	13,662	70.9	

High-throughput tissue disruption

A high-throughput tissue disruption method was developed to enable processing of samples in a 96-well plate format.

GENO/GRINDER

Contractions

High-throughput DNA shearing

Two high-throughput shearing methods were developed.

Plate-based shearing

- Protocols developed for FastPrep-96, Geno/Grinder, and MiniG
- Process 96 samples in <10 min
- Same equipment as used for tissue disruption

Pipette shearing

- Protocols developed for Hamilton NGS Star and Hamilton NIMBUS but are easily adaptable to other liquid handlers
- Process 96 samples in 15 min
- Requires only standard 300 µL pipette tips
- Can be incorporated into automated library prep

04	
23	
2001	
<u> </u>	
(0, 1)	

Comparable HiFi read length distributions were obtained for the two maize lines.

Sample	Assembly	Contig	Contig
	size (Gb)	N50 (Mb)	N90 (Mb)
Maize line 2	2.23	162.6	16.6

Assembly was performed on maize line 2 using hifiasm.

Methylation analysis

Revio performs 5-base sequencing (A, C, G, T + 5mC) by default with on-instrument basecalling and Google DeepConsensus. A representative region of the genome is shown.

- Red indicates hypermethylation
- Blue indicates hypomethylation
- Expressed genes indicated by blue, unmethylated regions

- Protocols were developed for the SPEX Geno/Grinder, MP Biomedicals FastPrep-96, and SPEX MiniG
- All three instruments performed equivalently
- Able to disrupt 96 plant samples <10 min
- The same equipment can be utilized for DNA shearing

Maize DNA sheared using the two high-throughput shearing methods produced similar size distributions as DNA sheared with the Megaruptor 3 system.

High-throughput capabilities

The Corteva/PacBio high-throughput workflow described has been validated by simultaneous processing of 96 plant samples with multiplexed sequencing on Revio. (Data not show)

Acknowledgements

The authors would like to thank the following for their data contributions: John Tenhundfeld, Zach Irelan, Paige Roos, and Justin Sibert

Research use only. Not for use in diagnostic procedures. © 2023 Pacific Biosciences of California, Inc. ("PacBio"). All rights reserved. Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third-party products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at pacb.com/license. Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omniome, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio, and Onso are trademarks of PacBio.